Step |
Hyp |
Ref |
Expression |
1 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
2 |
1
|
a1i |
⊢ ( 𝐼 ∈ ℕ → 2 ∈ ℕ0 ) |
3 |
|
nnnn0 |
⊢ ( 𝐼 ∈ ℕ → 𝐼 ∈ ℕ0 ) |
4 |
2 3
|
nn0expcld |
⊢ ( 𝐼 ∈ ℕ → ( 2 ↑ 𝐼 ) ∈ ℕ0 ) |
5 |
|
nnge1 |
⊢ ( 𝐼 ∈ ℕ → 1 ≤ 𝐼 ) |
6 |
|
2cnd |
⊢ ( 𝐼 ∈ ℕ → 2 ∈ ℂ ) |
7 |
6
|
exp1d |
⊢ ( 𝐼 ∈ ℕ → ( 2 ↑ 1 ) = 2 ) |
8 |
7
|
eqcomd |
⊢ ( 𝐼 ∈ ℕ → 2 = ( 2 ↑ 1 ) ) |
9 |
8
|
breq1d |
⊢ ( 𝐼 ∈ ℕ → ( 2 ≤ ( 2 ↑ 𝐼 ) ↔ ( 2 ↑ 1 ) ≤ ( 2 ↑ 𝐼 ) ) ) |
10 |
|
2re |
⊢ 2 ∈ ℝ |
11 |
10
|
a1i |
⊢ ( 𝐼 ∈ ℕ → 2 ∈ ℝ ) |
12 |
|
1zzd |
⊢ ( 𝐼 ∈ ℕ → 1 ∈ ℤ ) |
13 |
|
nnz |
⊢ ( 𝐼 ∈ ℕ → 𝐼 ∈ ℤ ) |
14 |
|
1lt2 |
⊢ 1 < 2 |
15 |
14
|
a1i |
⊢ ( 𝐼 ∈ ℕ → 1 < 2 ) |
16 |
11 12 13 15
|
leexp2d |
⊢ ( 𝐼 ∈ ℕ → ( 1 ≤ 𝐼 ↔ ( 2 ↑ 1 ) ≤ ( 2 ↑ 𝐼 ) ) ) |
17 |
9 16
|
bitr4d |
⊢ ( 𝐼 ∈ ℕ → ( 2 ≤ ( 2 ↑ 𝐼 ) ↔ 1 ≤ 𝐼 ) ) |
18 |
5 17
|
mpbird |
⊢ ( 𝐼 ∈ ℕ → 2 ≤ ( 2 ↑ 𝐼 ) ) |
19 |
|
nn0ge2m1nn |
⊢ ( ( ( 2 ↑ 𝐼 ) ∈ ℕ0 ∧ 2 ≤ ( 2 ↑ 𝐼 ) ) → ( ( 2 ↑ 𝐼 ) − 1 ) ∈ ℕ ) |
20 |
4 18 19
|
syl2anc |
⊢ ( 𝐼 ∈ ℕ → ( ( 2 ↑ 𝐼 ) − 1 ) ∈ ℕ ) |
21 |
|
blennn |
⊢ ( ( ( 2 ↑ 𝐼 ) − 1 ) ∈ ℕ → ( #b ‘ ( ( 2 ↑ 𝐼 ) − 1 ) ) = ( ( ⌊ ‘ ( 2 logb ( ( 2 ↑ 𝐼 ) − 1 ) ) ) + 1 ) ) |
22 |
20 21
|
syl |
⊢ ( 𝐼 ∈ ℕ → ( #b ‘ ( ( 2 ↑ 𝐼 ) − 1 ) ) = ( ( ⌊ ‘ ( 2 logb ( ( 2 ↑ 𝐼 ) − 1 ) ) ) + 1 ) ) |
23 |
|
logbpw2m1 |
⊢ ( 𝐼 ∈ ℕ → ( ⌊ ‘ ( 2 logb ( ( 2 ↑ 𝐼 ) − 1 ) ) ) = ( 𝐼 − 1 ) ) |
24 |
23
|
oveq1d |
⊢ ( 𝐼 ∈ ℕ → ( ( ⌊ ‘ ( 2 logb ( ( 2 ↑ 𝐼 ) − 1 ) ) ) + 1 ) = ( ( 𝐼 − 1 ) + 1 ) ) |
25 |
|
nncn |
⊢ ( 𝐼 ∈ ℕ → 𝐼 ∈ ℂ ) |
26 |
|
npcan1 |
⊢ ( 𝐼 ∈ ℂ → ( ( 𝐼 − 1 ) + 1 ) = 𝐼 ) |
27 |
25 26
|
syl |
⊢ ( 𝐼 ∈ ℕ → ( ( 𝐼 − 1 ) + 1 ) = 𝐼 ) |
28 |
22 24 27
|
3eqtrd |
⊢ ( 𝐼 ∈ ℕ → ( #b ‘ ( ( 2 ↑ 𝐼 ) − 1 ) ) = 𝐼 ) |