| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 2 | 1 | a1i | ⊢ ( 𝐼  ∈  ℕ  →  2  ∈  ℕ0 ) | 
						
							| 3 |  | nnnn0 | ⊢ ( 𝐼  ∈  ℕ  →  𝐼  ∈  ℕ0 ) | 
						
							| 4 | 2 3 | nn0expcld | ⊢ ( 𝐼  ∈  ℕ  →  ( 2 ↑ 𝐼 )  ∈  ℕ0 ) | 
						
							| 5 |  | nnge1 | ⊢ ( 𝐼  ∈  ℕ  →  1  ≤  𝐼 ) | 
						
							| 6 |  | 2cnd | ⊢ ( 𝐼  ∈  ℕ  →  2  ∈  ℂ ) | 
						
							| 7 | 6 | exp1d | ⊢ ( 𝐼  ∈  ℕ  →  ( 2 ↑ 1 )  =  2 ) | 
						
							| 8 | 7 | eqcomd | ⊢ ( 𝐼  ∈  ℕ  →  2  =  ( 2 ↑ 1 ) ) | 
						
							| 9 | 8 | breq1d | ⊢ ( 𝐼  ∈  ℕ  →  ( 2  ≤  ( 2 ↑ 𝐼 )  ↔  ( 2 ↑ 1 )  ≤  ( 2 ↑ 𝐼 ) ) ) | 
						
							| 10 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 11 | 10 | a1i | ⊢ ( 𝐼  ∈  ℕ  →  2  ∈  ℝ ) | 
						
							| 12 |  | 1zzd | ⊢ ( 𝐼  ∈  ℕ  →  1  ∈  ℤ ) | 
						
							| 13 |  | nnz | ⊢ ( 𝐼  ∈  ℕ  →  𝐼  ∈  ℤ ) | 
						
							| 14 |  | 1lt2 | ⊢ 1  <  2 | 
						
							| 15 | 14 | a1i | ⊢ ( 𝐼  ∈  ℕ  →  1  <  2 ) | 
						
							| 16 | 11 12 13 15 | leexp2d | ⊢ ( 𝐼  ∈  ℕ  →  ( 1  ≤  𝐼  ↔  ( 2 ↑ 1 )  ≤  ( 2 ↑ 𝐼 ) ) ) | 
						
							| 17 | 9 16 | bitr4d | ⊢ ( 𝐼  ∈  ℕ  →  ( 2  ≤  ( 2 ↑ 𝐼 )  ↔  1  ≤  𝐼 ) ) | 
						
							| 18 | 5 17 | mpbird | ⊢ ( 𝐼  ∈  ℕ  →  2  ≤  ( 2 ↑ 𝐼 ) ) | 
						
							| 19 |  | nn0ge2m1nn | ⊢ ( ( ( 2 ↑ 𝐼 )  ∈  ℕ0  ∧  2  ≤  ( 2 ↑ 𝐼 ) )  →  ( ( 2 ↑ 𝐼 )  −  1 )  ∈  ℕ ) | 
						
							| 20 | 4 18 19 | syl2anc | ⊢ ( 𝐼  ∈  ℕ  →  ( ( 2 ↑ 𝐼 )  −  1 )  ∈  ℕ ) | 
						
							| 21 |  | blennn | ⊢ ( ( ( 2 ↑ 𝐼 )  −  1 )  ∈  ℕ  →  ( #b ‘ ( ( 2 ↑ 𝐼 )  −  1 ) )  =  ( ( ⌊ ‘ ( 2  logb  ( ( 2 ↑ 𝐼 )  −  1 ) ) )  +  1 ) ) | 
						
							| 22 | 20 21 | syl | ⊢ ( 𝐼  ∈  ℕ  →  ( #b ‘ ( ( 2 ↑ 𝐼 )  −  1 ) )  =  ( ( ⌊ ‘ ( 2  logb  ( ( 2 ↑ 𝐼 )  −  1 ) ) )  +  1 ) ) | 
						
							| 23 |  | logbpw2m1 | ⊢ ( 𝐼  ∈  ℕ  →  ( ⌊ ‘ ( 2  logb  ( ( 2 ↑ 𝐼 )  −  1 ) ) )  =  ( 𝐼  −  1 ) ) | 
						
							| 24 | 23 | oveq1d | ⊢ ( 𝐼  ∈  ℕ  →  ( ( ⌊ ‘ ( 2  logb  ( ( 2 ↑ 𝐼 )  −  1 ) ) )  +  1 )  =  ( ( 𝐼  −  1 )  +  1 ) ) | 
						
							| 25 |  | nncn | ⊢ ( 𝐼  ∈  ℕ  →  𝐼  ∈  ℂ ) | 
						
							| 26 |  | npcan1 | ⊢ ( 𝐼  ∈  ℂ  →  ( ( 𝐼  −  1 )  +  1 )  =  𝐼 ) | 
						
							| 27 | 25 26 | syl | ⊢ ( 𝐼  ∈  ℕ  →  ( ( 𝐼  −  1 )  +  1 )  =  𝐼 ) | 
						
							| 28 | 22 24 27 | 3eqtrd | ⊢ ( 𝐼  ∈  ℕ  →  ( #b ‘ ( ( 2 ↑ 𝐼 )  −  1 ) )  =  𝐼 ) |