| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2nn0 |
|- 2 e. NN0 |
| 2 |
1
|
a1i |
|- ( I e. NN -> 2 e. NN0 ) |
| 3 |
|
nnnn0 |
|- ( I e. NN -> I e. NN0 ) |
| 4 |
2 3
|
nn0expcld |
|- ( I e. NN -> ( 2 ^ I ) e. NN0 ) |
| 5 |
|
nnge1 |
|- ( I e. NN -> 1 <_ I ) |
| 6 |
|
2cnd |
|- ( I e. NN -> 2 e. CC ) |
| 7 |
6
|
exp1d |
|- ( I e. NN -> ( 2 ^ 1 ) = 2 ) |
| 8 |
7
|
eqcomd |
|- ( I e. NN -> 2 = ( 2 ^ 1 ) ) |
| 9 |
8
|
breq1d |
|- ( I e. NN -> ( 2 <_ ( 2 ^ I ) <-> ( 2 ^ 1 ) <_ ( 2 ^ I ) ) ) |
| 10 |
|
2re |
|- 2 e. RR |
| 11 |
10
|
a1i |
|- ( I e. NN -> 2 e. RR ) |
| 12 |
|
1zzd |
|- ( I e. NN -> 1 e. ZZ ) |
| 13 |
|
nnz |
|- ( I e. NN -> I e. ZZ ) |
| 14 |
|
1lt2 |
|- 1 < 2 |
| 15 |
14
|
a1i |
|- ( I e. NN -> 1 < 2 ) |
| 16 |
11 12 13 15
|
leexp2d |
|- ( I e. NN -> ( 1 <_ I <-> ( 2 ^ 1 ) <_ ( 2 ^ I ) ) ) |
| 17 |
9 16
|
bitr4d |
|- ( I e. NN -> ( 2 <_ ( 2 ^ I ) <-> 1 <_ I ) ) |
| 18 |
5 17
|
mpbird |
|- ( I e. NN -> 2 <_ ( 2 ^ I ) ) |
| 19 |
|
nn0ge2m1nn |
|- ( ( ( 2 ^ I ) e. NN0 /\ 2 <_ ( 2 ^ I ) ) -> ( ( 2 ^ I ) - 1 ) e. NN ) |
| 20 |
4 18 19
|
syl2anc |
|- ( I e. NN -> ( ( 2 ^ I ) - 1 ) e. NN ) |
| 21 |
|
blennn |
|- ( ( ( 2 ^ I ) - 1 ) e. NN -> ( #b ` ( ( 2 ^ I ) - 1 ) ) = ( ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) + 1 ) ) |
| 22 |
20 21
|
syl |
|- ( I e. NN -> ( #b ` ( ( 2 ^ I ) - 1 ) ) = ( ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) + 1 ) ) |
| 23 |
|
logbpw2m1 |
|- ( I e. NN -> ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) = ( I - 1 ) ) |
| 24 |
23
|
oveq1d |
|- ( I e. NN -> ( ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) + 1 ) = ( ( I - 1 ) + 1 ) ) |
| 25 |
|
nncn |
|- ( I e. NN -> I e. CC ) |
| 26 |
|
npcan1 |
|- ( I e. CC -> ( ( I - 1 ) + 1 ) = I ) |
| 27 |
25 26
|
syl |
|- ( I e. NN -> ( ( I - 1 ) + 1 ) = I ) |
| 28 |
22 24 27
|
3eqtrd |
|- ( I e. NN -> ( #b ` ( ( 2 ^ I ) - 1 ) ) = I ) |