| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 2 | 1 | a1i |  |-  ( I e. NN -> 2 e. NN0 ) | 
						
							| 3 |  | nnnn0 |  |-  ( I e. NN -> I e. NN0 ) | 
						
							| 4 | 2 3 | nn0expcld |  |-  ( I e. NN -> ( 2 ^ I ) e. NN0 ) | 
						
							| 5 |  | nnge1 |  |-  ( I e. NN -> 1 <_ I ) | 
						
							| 6 |  | 2cnd |  |-  ( I e. NN -> 2 e. CC ) | 
						
							| 7 | 6 | exp1d |  |-  ( I e. NN -> ( 2 ^ 1 ) = 2 ) | 
						
							| 8 | 7 | eqcomd |  |-  ( I e. NN -> 2 = ( 2 ^ 1 ) ) | 
						
							| 9 | 8 | breq1d |  |-  ( I e. NN -> ( 2 <_ ( 2 ^ I ) <-> ( 2 ^ 1 ) <_ ( 2 ^ I ) ) ) | 
						
							| 10 |  | 2re |  |-  2 e. RR | 
						
							| 11 | 10 | a1i |  |-  ( I e. NN -> 2 e. RR ) | 
						
							| 12 |  | 1zzd |  |-  ( I e. NN -> 1 e. ZZ ) | 
						
							| 13 |  | nnz |  |-  ( I e. NN -> I e. ZZ ) | 
						
							| 14 |  | 1lt2 |  |-  1 < 2 | 
						
							| 15 | 14 | a1i |  |-  ( I e. NN -> 1 < 2 ) | 
						
							| 16 | 11 12 13 15 | leexp2d |  |-  ( I e. NN -> ( 1 <_ I <-> ( 2 ^ 1 ) <_ ( 2 ^ I ) ) ) | 
						
							| 17 | 9 16 | bitr4d |  |-  ( I e. NN -> ( 2 <_ ( 2 ^ I ) <-> 1 <_ I ) ) | 
						
							| 18 | 5 17 | mpbird |  |-  ( I e. NN -> 2 <_ ( 2 ^ I ) ) | 
						
							| 19 |  | nn0ge2m1nn |  |-  ( ( ( 2 ^ I ) e. NN0 /\ 2 <_ ( 2 ^ I ) ) -> ( ( 2 ^ I ) - 1 ) e. NN ) | 
						
							| 20 | 4 18 19 | syl2anc |  |-  ( I e. NN -> ( ( 2 ^ I ) - 1 ) e. NN ) | 
						
							| 21 |  | blennn |  |-  ( ( ( 2 ^ I ) - 1 ) e. NN -> ( #b ` ( ( 2 ^ I ) - 1 ) ) = ( ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) + 1 ) ) | 
						
							| 22 | 20 21 | syl |  |-  ( I e. NN -> ( #b ` ( ( 2 ^ I ) - 1 ) ) = ( ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) + 1 ) ) | 
						
							| 23 |  | logbpw2m1 |  |-  ( I e. NN -> ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) = ( I - 1 ) ) | 
						
							| 24 | 23 | oveq1d |  |-  ( I e. NN -> ( ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) + 1 ) = ( ( I - 1 ) + 1 ) ) | 
						
							| 25 |  | nncn |  |-  ( I e. NN -> I e. CC ) | 
						
							| 26 |  | npcan1 |  |-  ( I e. CC -> ( ( I - 1 ) + 1 ) = I ) | 
						
							| 27 | 25 26 | syl |  |-  ( I e. NN -> ( ( I - 1 ) + 1 ) = I ) | 
						
							| 28 | 22 24 27 | 3eqtrd |  |-  ( I e. NN -> ( #b ` ( ( 2 ^ I ) - 1 ) ) = I ) |