| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2rp |  |-  2 e. RR+ | 
						
							| 2 | 1 | a1i |  |-  ( N e. NN -> 2 e. RR+ ) | 
						
							| 3 |  | nnrp |  |-  ( N e. NN -> N e. RR+ ) | 
						
							| 4 |  | 1ne2 |  |-  1 =/= 2 | 
						
							| 5 | 4 | necomi |  |-  2 =/= 1 | 
						
							| 6 | 5 | a1i |  |-  ( N e. NN -> 2 =/= 1 ) | 
						
							| 7 |  | relogbcl |  |-  ( ( 2 e. RR+ /\ N e. RR+ /\ 2 =/= 1 ) -> ( 2 logb N ) e. RR ) | 
						
							| 8 | 2 3 6 7 | syl3anc |  |-  ( N e. NN -> ( 2 logb N ) e. RR ) | 
						
							| 9 | 8 | flcld |  |-  ( N e. NN -> ( |_ ` ( 2 logb N ) ) e. ZZ ) | 
						
							| 10 | 9 | zcnd |  |-  ( N e. NN -> ( |_ ` ( 2 logb N ) ) e. CC ) | 
						
							| 11 |  | pncan1 |  |-  ( ( |_ ` ( 2 logb N ) ) e. CC -> ( ( ( |_ ` ( 2 logb N ) ) + 1 ) - 1 ) = ( |_ ` ( 2 logb N ) ) ) | 
						
							| 12 | 10 11 | syl |  |-  ( N e. NN -> ( ( ( |_ ` ( 2 logb N ) ) + 1 ) - 1 ) = ( |_ ` ( 2 logb N ) ) ) | 
						
							| 13 | 12 | oveq2d |  |-  ( N e. NN -> ( 2 ^ ( ( ( |_ ` ( 2 logb N ) ) + 1 ) - 1 ) ) = ( 2 ^ ( |_ ` ( 2 logb N ) ) ) ) | 
						
							| 14 |  | blennn |  |-  ( N e. NN -> ( #b ` N ) = ( ( |_ ` ( 2 logb N ) ) + 1 ) ) | 
						
							| 15 | 14 | oveq1d |  |-  ( N e. NN -> ( ( #b ` N ) - 1 ) = ( ( ( |_ ` ( 2 logb N ) ) + 1 ) - 1 ) ) | 
						
							| 16 | 15 | oveq2d |  |-  ( N e. NN -> ( 2 ^ ( ( #b ` N ) - 1 ) ) = ( 2 ^ ( ( ( |_ ` ( 2 logb N ) ) + 1 ) - 1 ) ) ) | 
						
							| 17 |  | 2cnd |  |-  ( N e. NN -> 2 e. CC ) | 
						
							| 18 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 19 | 18 | a1i |  |-  ( N e. NN -> 2 =/= 0 ) | 
						
							| 20 | 17 19 9 | cxpexpzd |  |-  ( N e. NN -> ( 2 ^c ( |_ ` ( 2 logb N ) ) ) = ( 2 ^ ( |_ ` ( 2 logb N ) ) ) ) | 
						
							| 21 | 13 16 20 | 3eqtr4d |  |-  ( N e. NN -> ( 2 ^ ( ( #b ` N ) - 1 ) ) = ( 2 ^c ( |_ ` ( 2 logb N ) ) ) ) | 
						
							| 22 |  | flle |  |-  ( ( 2 logb N ) e. RR -> ( |_ ` ( 2 logb N ) ) <_ ( 2 logb N ) ) | 
						
							| 23 | 8 22 | syl |  |-  ( N e. NN -> ( |_ ` ( 2 logb N ) ) <_ ( 2 logb N ) ) | 
						
							| 24 |  | 2re |  |-  2 e. RR | 
						
							| 25 | 24 | a1i |  |-  ( N e. NN -> 2 e. RR ) | 
						
							| 26 |  | 1lt2 |  |-  1 < 2 | 
						
							| 27 | 26 | a1i |  |-  ( N e. NN -> 1 < 2 ) | 
						
							| 28 | 9 | zred |  |-  ( N e. NN -> ( |_ ` ( 2 logb N ) ) e. RR ) | 
						
							| 29 | 25 27 28 8 | cxpled |  |-  ( N e. NN -> ( ( |_ ` ( 2 logb N ) ) <_ ( 2 logb N ) <-> ( 2 ^c ( |_ ` ( 2 logb N ) ) ) <_ ( 2 ^c ( 2 logb N ) ) ) ) | 
						
							| 30 | 23 29 | mpbid |  |-  ( N e. NN -> ( 2 ^c ( |_ ` ( 2 logb N ) ) ) <_ ( 2 ^c ( 2 logb N ) ) ) | 
						
							| 31 |  | 2cn |  |-  2 e. CC | 
						
							| 32 |  | eldifpr |  |-  ( 2 e. ( CC \ { 0 , 1 } ) <-> ( 2 e. CC /\ 2 =/= 0 /\ 2 =/= 1 ) ) | 
						
							| 33 | 31 18 5 32 | mpbir3an |  |-  2 e. ( CC \ { 0 , 1 } ) | 
						
							| 34 |  | nncn |  |-  ( N e. NN -> N e. CC ) | 
						
							| 35 |  | nnne0 |  |-  ( N e. NN -> N =/= 0 ) | 
						
							| 36 |  | eldifsn |  |-  ( N e. ( CC \ { 0 } ) <-> ( N e. CC /\ N =/= 0 ) ) | 
						
							| 37 | 34 35 36 | sylanbrc |  |-  ( N e. NN -> N e. ( CC \ { 0 } ) ) | 
						
							| 38 |  | cxplogb |  |-  ( ( 2 e. ( CC \ { 0 , 1 } ) /\ N e. ( CC \ { 0 } ) ) -> ( 2 ^c ( 2 logb N ) ) = N ) | 
						
							| 39 | 33 37 38 | sylancr |  |-  ( N e. NN -> ( 2 ^c ( 2 logb N ) ) = N ) | 
						
							| 40 | 30 39 | breqtrd |  |-  ( N e. NN -> ( 2 ^c ( |_ ` ( 2 logb N ) ) ) <_ N ) | 
						
							| 41 | 21 40 | eqbrtrd |  |-  ( N e. NN -> ( 2 ^ ( ( #b ` N ) - 1 ) ) <_ N ) | 
						
							| 42 |  | flltp1 |  |-  ( ( 2 logb N ) e. RR -> ( 2 logb N ) < ( ( |_ ` ( 2 logb N ) ) + 1 ) ) | 
						
							| 43 | 8 42 | syl |  |-  ( N e. NN -> ( 2 logb N ) < ( ( |_ ` ( 2 logb N ) ) + 1 ) ) | 
						
							| 44 | 9 | peano2zd |  |-  ( N e. NN -> ( ( |_ ` ( 2 logb N ) ) + 1 ) e. ZZ ) | 
						
							| 45 | 44 | zred |  |-  ( N e. NN -> ( ( |_ ` ( 2 logb N ) ) + 1 ) e. RR ) | 
						
							| 46 | 25 27 8 45 | cxpltd |  |-  ( N e. NN -> ( ( 2 logb N ) < ( ( |_ ` ( 2 logb N ) ) + 1 ) <-> ( 2 ^c ( 2 logb N ) ) < ( 2 ^c ( ( |_ ` ( 2 logb N ) ) + 1 ) ) ) ) | 
						
							| 47 | 43 46 | mpbid |  |-  ( N e. NN -> ( 2 ^c ( 2 logb N ) ) < ( 2 ^c ( ( |_ ` ( 2 logb N ) ) + 1 ) ) ) | 
						
							| 48 | 17 19 44 | cxpexpzd |  |-  ( N e. NN -> ( 2 ^c ( ( |_ ` ( 2 logb N ) ) + 1 ) ) = ( 2 ^ ( ( |_ ` ( 2 logb N ) ) + 1 ) ) ) | 
						
							| 49 | 47 39 48 | 3brtr3d |  |-  ( N e. NN -> N < ( 2 ^ ( ( |_ ` ( 2 logb N ) ) + 1 ) ) ) | 
						
							| 50 | 14 | oveq2d |  |-  ( N e. NN -> ( 2 ^ ( #b ` N ) ) = ( 2 ^ ( ( |_ ` ( 2 logb N ) ) + 1 ) ) ) | 
						
							| 51 | 49 50 | breqtrrd |  |-  ( N e. NN -> N < ( 2 ^ ( #b ` N ) ) ) | 
						
							| 52 | 41 51 | jca |  |-  ( N e. NN -> ( ( 2 ^ ( ( #b ` N ) - 1 ) ) <_ N /\ N < ( 2 ^ ( #b ` N ) ) ) ) |