| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2rp |
|- 2 e. RR+ |
| 2 |
1
|
a1i |
|- ( N e. NN -> 2 e. RR+ ) |
| 3 |
|
nnrp |
|- ( N e. NN -> N e. RR+ ) |
| 4 |
|
1ne2 |
|- 1 =/= 2 |
| 5 |
4
|
necomi |
|- 2 =/= 1 |
| 6 |
5
|
a1i |
|- ( N e. NN -> 2 =/= 1 ) |
| 7 |
|
relogbcl |
|- ( ( 2 e. RR+ /\ N e. RR+ /\ 2 =/= 1 ) -> ( 2 logb N ) e. RR ) |
| 8 |
2 3 6 7
|
syl3anc |
|- ( N e. NN -> ( 2 logb N ) e. RR ) |
| 9 |
8
|
flcld |
|- ( N e. NN -> ( |_ ` ( 2 logb N ) ) e. ZZ ) |
| 10 |
9
|
zcnd |
|- ( N e. NN -> ( |_ ` ( 2 logb N ) ) e. CC ) |
| 11 |
|
pncan1 |
|- ( ( |_ ` ( 2 logb N ) ) e. CC -> ( ( ( |_ ` ( 2 logb N ) ) + 1 ) - 1 ) = ( |_ ` ( 2 logb N ) ) ) |
| 12 |
10 11
|
syl |
|- ( N e. NN -> ( ( ( |_ ` ( 2 logb N ) ) + 1 ) - 1 ) = ( |_ ` ( 2 logb N ) ) ) |
| 13 |
12
|
oveq2d |
|- ( N e. NN -> ( 2 ^ ( ( ( |_ ` ( 2 logb N ) ) + 1 ) - 1 ) ) = ( 2 ^ ( |_ ` ( 2 logb N ) ) ) ) |
| 14 |
|
blennn |
|- ( N e. NN -> ( #b ` N ) = ( ( |_ ` ( 2 logb N ) ) + 1 ) ) |
| 15 |
14
|
oveq1d |
|- ( N e. NN -> ( ( #b ` N ) - 1 ) = ( ( ( |_ ` ( 2 logb N ) ) + 1 ) - 1 ) ) |
| 16 |
15
|
oveq2d |
|- ( N e. NN -> ( 2 ^ ( ( #b ` N ) - 1 ) ) = ( 2 ^ ( ( ( |_ ` ( 2 logb N ) ) + 1 ) - 1 ) ) ) |
| 17 |
|
2cnd |
|- ( N e. NN -> 2 e. CC ) |
| 18 |
|
2ne0 |
|- 2 =/= 0 |
| 19 |
18
|
a1i |
|- ( N e. NN -> 2 =/= 0 ) |
| 20 |
17 19 9
|
cxpexpzd |
|- ( N e. NN -> ( 2 ^c ( |_ ` ( 2 logb N ) ) ) = ( 2 ^ ( |_ ` ( 2 logb N ) ) ) ) |
| 21 |
13 16 20
|
3eqtr4d |
|- ( N e. NN -> ( 2 ^ ( ( #b ` N ) - 1 ) ) = ( 2 ^c ( |_ ` ( 2 logb N ) ) ) ) |
| 22 |
|
flle |
|- ( ( 2 logb N ) e. RR -> ( |_ ` ( 2 logb N ) ) <_ ( 2 logb N ) ) |
| 23 |
8 22
|
syl |
|- ( N e. NN -> ( |_ ` ( 2 logb N ) ) <_ ( 2 logb N ) ) |
| 24 |
|
2re |
|- 2 e. RR |
| 25 |
24
|
a1i |
|- ( N e. NN -> 2 e. RR ) |
| 26 |
|
1lt2 |
|- 1 < 2 |
| 27 |
26
|
a1i |
|- ( N e. NN -> 1 < 2 ) |
| 28 |
9
|
zred |
|- ( N e. NN -> ( |_ ` ( 2 logb N ) ) e. RR ) |
| 29 |
25 27 28 8
|
cxpled |
|- ( N e. NN -> ( ( |_ ` ( 2 logb N ) ) <_ ( 2 logb N ) <-> ( 2 ^c ( |_ ` ( 2 logb N ) ) ) <_ ( 2 ^c ( 2 logb N ) ) ) ) |
| 30 |
23 29
|
mpbid |
|- ( N e. NN -> ( 2 ^c ( |_ ` ( 2 logb N ) ) ) <_ ( 2 ^c ( 2 logb N ) ) ) |
| 31 |
|
2cn |
|- 2 e. CC |
| 32 |
|
eldifpr |
|- ( 2 e. ( CC \ { 0 , 1 } ) <-> ( 2 e. CC /\ 2 =/= 0 /\ 2 =/= 1 ) ) |
| 33 |
31 18 5 32
|
mpbir3an |
|- 2 e. ( CC \ { 0 , 1 } ) |
| 34 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
| 35 |
|
nnne0 |
|- ( N e. NN -> N =/= 0 ) |
| 36 |
|
eldifsn |
|- ( N e. ( CC \ { 0 } ) <-> ( N e. CC /\ N =/= 0 ) ) |
| 37 |
34 35 36
|
sylanbrc |
|- ( N e. NN -> N e. ( CC \ { 0 } ) ) |
| 38 |
|
cxplogb |
|- ( ( 2 e. ( CC \ { 0 , 1 } ) /\ N e. ( CC \ { 0 } ) ) -> ( 2 ^c ( 2 logb N ) ) = N ) |
| 39 |
33 37 38
|
sylancr |
|- ( N e. NN -> ( 2 ^c ( 2 logb N ) ) = N ) |
| 40 |
30 39
|
breqtrd |
|- ( N e. NN -> ( 2 ^c ( |_ ` ( 2 logb N ) ) ) <_ N ) |
| 41 |
21 40
|
eqbrtrd |
|- ( N e. NN -> ( 2 ^ ( ( #b ` N ) - 1 ) ) <_ N ) |
| 42 |
|
flltp1 |
|- ( ( 2 logb N ) e. RR -> ( 2 logb N ) < ( ( |_ ` ( 2 logb N ) ) + 1 ) ) |
| 43 |
8 42
|
syl |
|- ( N e. NN -> ( 2 logb N ) < ( ( |_ ` ( 2 logb N ) ) + 1 ) ) |
| 44 |
9
|
peano2zd |
|- ( N e. NN -> ( ( |_ ` ( 2 logb N ) ) + 1 ) e. ZZ ) |
| 45 |
44
|
zred |
|- ( N e. NN -> ( ( |_ ` ( 2 logb N ) ) + 1 ) e. RR ) |
| 46 |
25 27 8 45
|
cxpltd |
|- ( N e. NN -> ( ( 2 logb N ) < ( ( |_ ` ( 2 logb N ) ) + 1 ) <-> ( 2 ^c ( 2 logb N ) ) < ( 2 ^c ( ( |_ ` ( 2 logb N ) ) + 1 ) ) ) ) |
| 47 |
43 46
|
mpbid |
|- ( N e. NN -> ( 2 ^c ( 2 logb N ) ) < ( 2 ^c ( ( |_ ` ( 2 logb N ) ) + 1 ) ) ) |
| 48 |
17 19 44
|
cxpexpzd |
|- ( N e. NN -> ( 2 ^c ( ( |_ ` ( 2 logb N ) ) + 1 ) ) = ( 2 ^ ( ( |_ ` ( 2 logb N ) ) + 1 ) ) ) |
| 49 |
47 39 48
|
3brtr3d |
|- ( N e. NN -> N < ( 2 ^ ( ( |_ ` ( 2 logb N ) ) + 1 ) ) ) |
| 50 |
14
|
oveq2d |
|- ( N e. NN -> ( 2 ^ ( #b ` N ) ) = ( 2 ^ ( ( |_ ` ( 2 logb N ) ) + 1 ) ) ) |
| 51 |
49 50
|
breqtrrd |
|- ( N e. NN -> N < ( 2 ^ ( #b ` N ) ) ) |
| 52 |
41 51
|
jca |
|- ( N e. NN -> ( ( 2 ^ ( ( #b ` N ) - 1 ) ) <_ N /\ N < ( 2 ^ ( #b ` N ) ) ) ) |