| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 2 | 1 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  2  ∈  ℝ+ ) | 
						
							| 3 |  | nnrp | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℝ+ ) | 
						
							| 4 |  | 1ne2 | ⊢ 1  ≠  2 | 
						
							| 5 | 4 | necomi | ⊢ 2  ≠  1 | 
						
							| 6 | 5 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  2  ≠  1 ) | 
						
							| 7 |  | relogbcl | ⊢ ( ( 2  ∈  ℝ+  ∧  𝑁  ∈  ℝ+  ∧  2  ≠  1 )  →  ( 2  logb  𝑁 )  ∈  ℝ ) | 
						
							| 8 | 2 3 6 7 | syl3anc | ⊢ ( 𝑁  ∈  ℕ  →  ( 2  logb  𝑁 )  ∈  ℝ ) | 
						
							| 9 | 8 | flcld | ⊢ ( 𝑁  ∈  ℕ  →  ( ⌊ ‘ ( 2  logb  𝑁 ) )  ∈  ℤ ) | 
						
							| 10 | 9 | zcnd | ⊢ ( 𝑁  ∈  ℕ  →  ( ⌊ ‘ ( 2  logb  𝑁 ) )  ∈  ℂ ) | 
						
							| 11 |  | pncan1 | ⊢ ( ( ⌊ ‘ ( 2  logb  𝑁 ) )  ∈  ℂ  →  ( ( ( ⌊ ‘ ( 2  logb  𝑁 ) )  +  1 )  −  1 )  =  ( ⌊ ‘ ( 2  logb  𝑁 ) ) ) | 
						
							| 12 | 10 11 | syl | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ( ⌊ ‘ ( 2  logb  𝑁 ) )  +  1 )  −  1 )  =  ( ⌊ ‘ ( 2  logb  𝑁 ) ) ) | 
						
							| 13 | 12 | oveq2d | ⊢ ( 𝑁  ∈  ℕ  →  ( 2 ↑ ( ( ( ⌊ ‘ ( 2  logb  𝑁 ) )  +  1 )  −  1 ) )  =  ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑁 ) ) ) ) | 
						
							| 14 |  | blennn | ⊢ ( 𝑁  ∈  ℕ  →  ( #b ‘ 𝑁 )  =  ( ( ⌊ ‘ ( 2  logb  𝑁 ) )  +  1 ) ) | 
						
							| 15 | 14 | oveq1d | ⊢ ( 𝑁  ∈  ℕ  →  ( ( #b ‘ 𝑁 )  −  1 )  =  ( ( ( ⌊ ‘ ( 2  logb  𝑁 ) )  +  1 )  −  1 ) ) | 
						
							| 16 | 15 | oveq2d | ⊢ ( 𝑁  ∈  ℕ  →  ( 2 ↑ ( ( #b ‘ 𝑁 )  −  1 ) )  =  ( 2 ↑ ( ( ( ⌊ ‘ ( 2  logb  𝑁 ) )  +  1 )  −  1 ) ) ) | 
						
							| 17 |  | 2cnd | ⊢ ( 𝑁  ∈  ℕ  →  2  ∈  ℂ ) | 
						
							| 18 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 19 | 18 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  2  ≠  0 ) | 
						
							| 20 | 17 19 9 | cxpexpzd | ⊢ ( 𝑁  ∈  ℕ  →  ( 2 ↑𝑐 ( ⌊ ‘ ( 2  logb  𝑁 ) ) )  =  ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑁 ) ) ) ) | 
						
							| 21 | 13 16 20 | 3eqtr4d | ⊢ ( 𝑁  ∈  ℕ  →  ( 2 ↑ ( ( #b ‘ 𝑁 )  −  1 ) )  =  ( 2 ↑𝑐 ( ⌊ ‘ ( 2  logb  𝑁 ) ) ) ) | 
						
							| 22 |  | flle | ⊢ ( ( 2  logb  𝑁 )  ∈  ℝ  →  ( ⌊ ‘ ( 2  logb  𝑁 ) )  ≤  ( 2  logb  𝑁 ) ) | 
						
							| 23 | 8 22 | syl | ⊢ ( 𝑁  ∈  ℕ  →  ( ⌊ ‘ ( 2  logb  𝑁 ) )  ≤  ( 2  logb  𝑁 ) ) | 
						
							| 24 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 25 | 24 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  2  ∈  ℝ ) | 
						
							| 26 |  | 1lt2 | ⊢ 1  <  2 | 
						
							| 27 | 26 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  1  <  2 ) | 
						
							| 28 | 9 | zred | ⊢ ( 𝑁  ∈  ℕ  →  ( ⌊ ‘ ( 2  logb  𝑁 ) )  ∈  ℝ ) | 
						
							| 29 | 25 27 28 8 | cxpled | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ⌊ ‘ ( 2  logb  𝑁 ) )  ≤  ( 2  logb  𝑁 )  ↔  ( 2 ↑𝑐 ( ⌊ ‘ ( 2  logb  𝑁 ) ) )  ≤  ( 2 ↑𝑐 ( 2  logb  𝑁 ) ) ) ) | 
						
							| 30 | 23 29 | mpbid | ⊢ ( 𝑁  ∈  ℕ  →  ( 2 ↑𝑐 ( ⌊ ‘ ( 2  logb  𝑁 ) ) )  ≤  ( 2 ↑𝑐 ( 2  logb  𝑁 ) ) ) | 
						
							| 31 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 32 |  | eldifpr | ⊢ ( 2  ∈  ( ℂ  ∖  { 0 ,  1 } )  ↔  ( 2  ∈  ℂ  ∧  2  ≠  0  ∧  2  ≠  1 ) ) | 
						
							| 33 | 31 18 5 32 | mpbir3an | ⊢ 2  ∈  ( ℂ  ∖  { 0 ,  1 } ) | 
						
							| 34 |  | nncn | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℂ ) | 
						
							| 35 |  | nnne0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ≠  0 ) | 
						
							| 36 |  | eldifsn | ⊢ ( 𝑁  ∈  ( ℂ  ∖  { 0 } )  ↔  ( 𝑁  ∈  ℂ  ∧  𝑁  ≠  0 ) ) | 
						
							| 37 | 34 35 36 | sylanbrc | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ( ℂ  ∖  { 0 } ) ) | 
						
							| 38 |  | cxplogb | ⊢ ( ( 2  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  𝑁  ∈  ( ℂ  ∖  { 0 } ) )  →  ( 2 ↑𝑐 ( 2  logb  𝑁 ) )  =  𝑁 ) | 
						
							| 39 | 33 37 38 | sylancr | ⊢ ( 𝑁  ∈  ℕ  →  ( 2 ↑𝑐 ( 2  logb  𝑁 ) )  =  𝑁 ) | 
						
							| 40 | 30 39 | breqtrd | ⊢ ( 𝑁  ∈  ℕ  →  ( 2 ↑𝑐 ( ⌊ ‘ ( 2  logb  𝑁 ) ) )  ≤  𝑁 ) | 
						
							| 41 | 21 40 | eqbrtrd | ⊢ ( 𝑁  ∈  ℕ  →  ( 2 ↑ ( ( #b ‘ 𝑁 )  −  1 ) )  ≤  𝑁 ) | 
						
							| 42 |  | flltp1 | ⊢ ( ( 2  logb  𝑁 )  ∈  ℝ  →  ( 2  logb  𝑁 )  <  ( ( ⌊ ‘ ( 2  logb  𝑁 ) )  +  1 ) ) | 
						
							| 43 | 8 42 | syl | ⊢ ( 𝑁  ∈  ℕ  →  ( 2  logb  𝑁 )  <  ( ( ⌊ ‘ ( 2  logb  𝑁 ) )  +  1 ) ) | 
						
							| 44 | 9 | peano2zd | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ⌊ ‘ ( 2  logb  𝑁 ) )  +  1 )  ∈  ℤ ) | 
						
							| 45 | 44 | zred | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ⌊ ‘ ( 2  logb  𝑁 ) )  +  1 )  ∈  ℝ ) | 
						
							| 46 | 25 27 8 45 | cxpltd | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 2  logb  𝑁 )  <  ( ( ⌊ ‘ ( 2  logb  𝑁 ) )  +  1 )  ↔  ( 2 ↑𝑐 ( 2  logb  𝑁 ) )  <  ( 2 ↑𝑐 ( ( ⌊ ‘ ( 2  logb  𝑁 ) )  +  1 ) ) ) ) | 
						
							| 47 | 43 46 | mpbid | ⊢ ( 𝑁  ∈  ℕ  →  ( 2 ↑𝑐 ( 2  logb  𝑁 ) )  <  ( 2 ↑𝑐 ( ( ⌊ ‘ ( 2  logb  𝑁 ) )  +  1 ) ) ) | 
						
							| 48 | 17 19 44 | cxpexpzd | ⊢ ( 𝑁  ∈  ℕ  →  ( 2 ↑𝑐 ( ( ⌊ ‘ ( 2  logb  𝑁 ) )  +  1 ) )  =  ( 2 ↑ ( ( ⌊ ‘ ( 2  logb  𝑁 ) )  +  1 ) ) ) | 
						
							| 49 | 47 39 48 | 3brtr3d | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  <  ( 2 ↑ ( ( ⌊ ‘ ( 2  logb  𝑁 ) )  +  1 ) ) ) | 
						
							| 50 | 14 | oveq2d | ⊢ ( 𝑁  ∈  ℕ  →  ( 2 ↑ ( #b ‘ 𝑁 ) )  =  ( 2 ↑ ( ( ⌊ ‘ ( 2  logb  𝑁 ) )  +  1 ) ) ) | 
						
							| 51 | 49 50 | breqtrrd | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  <  ( 2 ↑ ( #b ‘ 𝑁 ) ) ) | 
						
							| 52 | 41 51 | jca | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 2 ↑ ( ( #b ‘ 𝑁 )  −  1 ) )  ≤  𝑁  ∧  𝑁  <  ( 2 ↑ ( #b ‘ 𝑁 ) ) ) ) |