Step |
Hyp |
Ref |
Expression |
1 |
|
2rp |
⊢ 2 ∈ ℝ+ |
2 |
1
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℝ+ ) |
3 |
|
nnrp |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ+ ) |
4 |
|
1ne2 |
⊢ 1 ≠ 2 |
5 |
4
|
necomi |
⊢ 2 ≠ 1 |
6 |
5
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 2 ≠ 1 ) |
7 |
|
relogbcl |
⊢ ( ( 2 ∈ ℝ+ ∧ 𝑁 ∈ ℝ+ ∧ 2 ≠ 1 ) → ( 2 logb 𝑁 ) ∈ ℝ ) |
8 |
2 3 6 7
|
syl3anc |
⊢ ( 𝑁 ∈ ℕ → ( 2 logb 𝑁 ) ∈ ℝ ) |
9 |
8
|
flcld |
⊢ ( 𝑁 ∈ ℕ → ( ⌊ ‘ ( 2 logb 𝑁 ) ) ∈ ℤ ) |
10 |
9
|
zcnd |
⊢ ( 𝑁 ∈ ℕ → ( ⌊ ‘ ( 2 logb 𝑁 ) ) ∈ ℂ ) |
11 |
|
pncan1 |
⊢ ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) ∈ ℂ → ( ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) + 1 ) − 1 ) = ( ⌊ ‘ ( 2 logb 𝑁 ) ) ) |
12 |
10 11
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) + 1 ) − 1 ) = ( ⌊ ‘ ( 2 logb 𝑁 ) ) ) |
13 |
12
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ → ( 2 ↑ ( ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) + 1 ) − 1 ) ) = ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑁 ) ) ) ) |
14 |
|
blennn |
⊢ ( 𝑁 ∈ ℕ → ( #b ‘ 𝑁 ) = ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) + 1 ) ) |
15 |
14
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( #b ‘ 𝑁 ) − 1 ) = ( ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) + 1 ) − 1 ) ) |
16 |
15
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ → ( 2 ↑ ( ( #b ‘ 𝑁 ) − 1 ) ) = ( 2 ↑ ( ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) + 1 ) − 1 ) ) ) |
17 |
|
2cnd |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℂ ) |
18 |
|
2ne0 |
⊢ 2 ≠ 0 |
19 |
18
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 2 ≠ 0 ) |
20 |
17 19 9
|
cxpexpzd |
⊢ ( 𝑁 ∈ ℕ → ( 2 ↑𝑐 ( ⌊ ‘ ( 2 logb 𝑁 ) ) ) = ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑁 ) ) ) ) |
21 |
13 16 20
|
3eqtr4d |
⊢ ( 𝑁 ∈ ℕ → ( 2 ↑ ( ( #b ‘ 𝑁 ) − 1 ) ) = ( 2 ↑𝑐 ( ⌊ ‘ ( 2 logb 𝑁 ) ) ) ) |
22 |
|
flle |
⊢ ( ( 2 logb 𝑁 ) ∈ ℝ → ( ⌊ ‘ ( 2 logb 𝑁 ) ) ≤ ( 2 logb 𝑁 ) ) |
23 |
8 22
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( ⌊ ‘ ( 2 logb 𝑁 ) ) ≤ ( 2 logb 𝑁 ) ) |
24 |
|
2re |
⊢ 2 ∈ ℝ |
25 |
24
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℝ ) |
26 |
|
1lt2 |
⊢ 1 < 2 |
27 |
26
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 1 < 2 ) |
28 |
9
|
zred |
⊢ ( 𝑁 ∈ ℕ → ( ⌊ ‘ ( 2 logb 𝑁 ) ) ∈ ℝ ) |
29 |
25 27 28 8
|
cxpled |
⊢ ( 𝑁 ∈ ℕ → ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) ≤ ( 2 logb 𝑁 ) ↔ ( 2 ↑𝑐 ( ⌊ ‘ ( 2 logb 𝑁 ) ) ) ≤ ( 2 ↑𝑐 ( 2 logb 𝑁 ) ) ) ) |
30 |
23 29
|
mpbid |
⊢ ( 𝑁 ∈ ℕ → ( 2 ↑𝑐 ( ⌊ ‘ ( 2 logb 𝑁 ) ) ) ≤ ( 2 ↑𝑐 ( 2 logb 𝑁 ) ) ) |
31 |
|
2cn |
⊢ 2 ∈ ℂ |
32 |
|
eldifpr |
⊢ ( 2 ∈ ( ℂ ∖ { 0 , 1 } ) ↔ ( 2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1 ) ) |
33 |
31 18 5 32
|
mpbir3an |
⊢ 2 ∈ ( ℂ ∖ { 0 , 1 } ) |
34 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
35 |
|
nnne0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) |
36 |
|
eldifsn |
⊢ ( 𝑁 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝑁 ∈ ℂ ∧ 𝑁 ≠ 0 ) ) |
37 |
34 35 36
|
sylanbrc |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ( ℂ ∖ { 0 } ) ) |
38 |
|
cxplogb |
⊢ ( ( 2 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝑁 ∈ ( ℂ ∖ { 0 } ) ) → ( 2 ↑𝑐 ( 2 logb 𝑁 ) ) = 𝑁 ) |
39 |
33 37 38
|
sylancr |
⊢ ( 𝑁 ∈ ℕ → ( 2 ↑𝑐 ( 2 logb 𝑁 ) ) = 𝑁 ) |
40 |
30 39
|
breqtrd |
⊢ ( 𝑁 ∈ ℕ → ( 2 ↑𝑐 ( ⌊ ‘ ( 2 logb 𝑁 ) ) ) ≤ 𝑁 ) |
41 |
21 40
|
eqbrtrd |
⊢ ( 𝑁 ∈ ℕ → ( 2 ↑ ( ( #b ‘ 𝑁 ) − 1 ) ) ≤ 𝑁 ) |
42 |
|
flltp1 |
⊢ ( ( 2 logb 𝑁 ) ∈ ℝ → ( 2 logb 𝑁 ) < ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) + 1 ) ) |
43 |
8 42
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( 2 logb 𝑁 ) < ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) + 1 ) ) |
44 |
9
|
peano2zd |
⊢ ( 𝑁 ∈ ℕ → ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) + 1 ) ∈ ℤ ) |
45 |
44
|
zred |
⊢ ( 𝑁 ∈ ℕ → ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) + 1 ) ∈ ℝ ) |
46 |
25 27 8 45
|
cxpltd |
⊢ ( 𝑁 ∈ ℕ → ( ( 2 logb 𝑁 ) < ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) + 1 ) ↔ ( 2 ↑𝑐 ( 2 logb 𝑁 ) ) < ( 2 ↑𝑐 ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) + 1 ) ) ) ) |
47 |
43 46
|
mpbid |
⊢ ( 𝑁 ∈ ℕ → ( 2 ↑𝑐 ( 2 logb 𝑁 ) ) < ( 2 ↑𝑐 ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) + 1 ) ) ) |
48 |
17 19 44
|
cxpexpzd |
⊢ ( 𝑁 ∈ ℕ → ( 2 ↑𝑐 ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) + 1 ) ) = ( 2 ↑ ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) + 1 ) ) ) |
49 |
47 39 48
|
3brtr3d |
⊢ ( 𝑁 ∈ ℕ → 𝑁 < ( 2 ↑ ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) + 1 ) ) ) |
50 |
14
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ → ( 2 ↑ ( #b ‘ 𝑁 ) ) = ( 2 ↑ ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) + 1 ) ) ) |
51 |
49 50
|
breqtrrd |
⊢ ( 𝑁 ∈ ℕ → 𝑁 < ( 2 ↑ ( #b ‘ 𝑁 ) ) ) |
52 |
41 51
|
jca |
⊢ ( 𝑁 ∈ ℕ → ( ( 2 ↑ ( ( #b ‘ 𝑁 ) − 1 ) ) ≤ 𝑁 ∧ 𝑁 < ( 2 ↑ ( #b ‘ 𝑁 ) ) ) ) |