Step |
Hyp |
Ref |
Expression |
1 |
|
2nn |
|- 2 e. NN |
2 |
|
nnexpcl |
|- ( ( 2 e. NN /\ I e. NN0 ) -> ( 2 ^ I ) e. NN ) |
3 |
1 2
|
mpan |
|- ( I e. NN0 -> ( 2 ^ I ) e. NN ) |
4 |
|
blennn |
|- ( ( 2 ^ I ) e. NN -> ( #b ` ( 2 ^ I ) ) = ( ( |_ ` ( 2 logb ( 2 ^ I ) ) ) + 1 ) ) |
5 |
3 4
|
syl |
|- ( I e. NN0 -> ( #b ` ( 2 ^ I ) ) = ( ( |_ ` ( 2 logb ( 2 ^ I ) ) ) + 1 ) ) |
6 |
|
2z |
|- 2 e. ZZ |
7 |
|
uzid |
|- ( 2 e. ZZ -> 2 e. ( ZZ>= ` 2 ) ) |
8 |
6 7
|
mp1i |
|- ( I e. NN0 -> 2 e. ( ZZ>= ` 2 ) ) |
9 |
|
nn0z |
|- ( I e. NN0 -> I e. ZZ ) |
10 |
|
nnlogbexp |
|- ( ( 2 e. ( ZZ>= ` 2 ) /\ I e. ZZ ) -> ( 2 logb ( 2 ^ I ) ) = I ) |
11 |
8 9 10
|
syl2anc |
|- ( I e. NN0 -> ( 2 logb ( 2 ^ I ) ) = I ) |
12 |
11
|
fveq2d |
|- ( I e. NN0 -> ( |_ ` ( 2 logb ( 2 ^ I ) ) ) = ( |_ ` I ) ) |
13 |
|
flid |
|- ( I e. ZZ -> ( |_ ` I ) = I ) |
14 |
9 13
|
syl |
|- ( I e. NN0 -> ( |_ ` I ) = I ) |
15 |
12 14
|
eqtrd |
|- ( I e. NN0 -> ( |_ ` ( 2 logb ( 2 ^ I ) ) ) = I ) |
16 |
15
|
oveq1d |
|- ( I e. NN0 -> ( ( |_ ` ( 2 logb ( 2 ^ I ) ) ) + 1 ) = ( I + 1 ) ) |
17 |
5 16
|
eqtrd |
|- ( I e. NN0 -> ( #b ` ( 2 ^ I ) ) = ( I + 1 ) ) |