| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2nn |  |-  2 e. NN | 
						
							| 2 |  | nnexpcl |  |-  ( ( 2 e. NN /\ I e. NN0 ) -> ( 2 ^ I ) e. NN ) | 
						
							| 3 | 1 2 | mpan |  |-  ( I e. NN0 -> ( 2 ^ I ) e. NN ) | 
						
							| 4 |  | blennn |  |-  ( ( 2 ^ I ) e. NN -> ( #b ` ( 2 ^ I ) ) = ( ( |_ ` ( 2 logb ( 2 ^ I ) ) ) + 1 ) ) | 
						
							| 5 | 3 4 | syl |  |-  ( I e. NN0 -> ( #b ` ( 2 ^ I ) ) = ( ( |_ ` ( 2 logb ( 2 ^ I ) ) ) + 1 ) ) | 
						
							| 6 |  | 2z |  |-  2 e. ZZ | 
						
							| 7 |  | uzid |  |-  ( 2 e. ZZ -> 2 e. ( ZZ>= ` 2 ) ) | 
						
							| 8 | 6 7 | mp1i |  |-  ( I e. NN0 -> 2 e. ( ZZ>= ` 2 ) ) | 
						
							| 9 |  | nn0z |  |-  ( I e. NN0 -> I e. ZZ ) | 
						
							| 10 |  | nnlogbexp |  |-  ( ( 2 e. ( ZZ>= ` 2 ) /\ I e. ZZ ) -> ( 2 logb ( 2 ^ I ) ) = I ) | 
						
							| 11 | 8 9 10 | syl2anc |  |-  ( I e. NN0 -> ( 2 logb ( 2 ^ I ) ) = I ) | 
						
							| 12 | 11 | fveq2d |  |-  ( I e. NN0 -> ( |_ ` ( 2 logb ( 2 ^ I ) ) ) = ( |_ ` I ) ) | 
						
							| 13 |  | flid |  |-  ( I e. ZZ -> ( |_ ` I ) = I ) | 
						
							| 14 | 9 13 | syl |  |-  ( I e. NN0 -> ( |_ ` I ) = I ) | 
						
							| 15 | 12 14 | eqtrd |  |-  ( I e. NN0 -> ( |_ ` ( 2 logb ( 2 ^ I ) ) ) = I ) | 
						
							| 16 | 15 | oveq1d |  |-  ( I e. NN0 -> ( ( |_ ` ( 2 logb ( 2 ^ I ) ) ) + 1 ) = ( I + 1 ) ) | 
						
							| 17 | 5 16 | eqtrd |  |-  ( I e. NN0 -> ( #b ` ( 2 ^ I ) ) = ( I + 1 ) ) |