Metamath Proof Explorer


Theorem bnj1014

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1014.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
bnj1014.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
bnj1014.13 𝐷 = ( ω ∖ { ∅ } )
bnj1014.14 𝐵 = { 𝑓 ∣ ∃ 𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 ) }
Assertion bnj1014 ( ( 𝑔𝐵𝑗 ∈ dom 𝑔 ) → ( 𝑔𝑗 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) )

Proof

Step Hyp Ref Expression
1 bnj1014.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
2 bnj1014.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
3 bnj1014.13 𝐷 = ( ω ∖ { ∅ } )
4 bnj1014.14 𝐵 = { 𝑓 ∣ ∃ 𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 ) }
5 nfcv 𝑖 𝐷
6 1 2 bnj911 ( ( 𝑓 Fn 𝑛𝜑𝜓 ) → ∀ 𝑖 ( 𝑓 Fn 𝑛𝜑𝜓 ) )
7 6 nf5i 𝑖 ( 𝑓 Fn 𝑛𝜑𝜓 )
8 5 7 nfrex 𝑖𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 )
9 8 nfab 𝑖 { 𝑓 ∣ ∃ 𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 ) }
10 4 9 nfcxfr 𝑖 𝐵
11 10 nfcri 𝑖 𝑔𝐵
12 nfv 𝑖 𝑗 ∈ dom 𝑔
13 11 12 nfan 𝑖 ( 𝑔𝐵𝑗 ∈ dom 𝑔 )
14 nfv 𝑖 ( 𝑔𝑗 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 )
15 13 14 nfim 𝑖 ( ( 𝑔𝐵𝑗 ∈ dom 𝑔 ) → ( 𝑔𝑗 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) )
16 15 nf5ri ( ( ( 𝑔𝐵𝑗 ∈ dom 𝑔 ) → ( 𝑔𝑗 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) → ∀ 𝑖 ( ( 𝑔𝐵𝑗 ∈ dom 𝑔 ) → ( 𝑔𝑗 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) )
17 eleq1w ( 𝑗 = 𝑖 → ( 𝑗 ∈ dom 𝑔𝑖 ∈ dom 𝑔 ) )
18 17 anbi2d ( 𝑗 = 𝑖 → ( ( 𝑔𝐵𝑗 ∈ dom 𝑔 ) ↔ ( 𝑔𝐵𝑖 ∈ dom 𝑔 ) ) )
19 fveq2 ( 𝑗 = 𝑖 → ( 𝑔𝑗 ) = ( 𝑔𝑖 ) )
20 19 sseq1d ( 𝑗 = 𝑖 → ( ( 𝑔𝑗 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ↔ ( 𝑔𝑖 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) )
21 18 20 imbi12d ( 𝑗 = 𝑖 → ( ( ( 𝑔𝐵𝑗 ∈ dom 𝑔 ) → ( 𝑔𝑗 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ↔ ( ( 𝑔𝐵𝑖 ∈ dom 𝑔 ) → ( 𝑔𝑖 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) )
22 21 equcoms ( 𝑖 = 𝑗 → ( ( ( 𝑔𝐵𝑗 ∈ dom 𝑔 ) → ( 𝑔𝑗 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ↔ ( ( 𝑔𝐵𝑖 ∈ dom 𝑔 ) → ( 𝑔𝑖 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) )
23 4 bnj1317 ( 𝑔𝐵 → ∀ 𝑓 𝑔𝐵 )
24 23 nf5i 𝑓 𝑔𝐵
25 nfv 𝑓 𝑖 ∈ dom 𝑔
26 24 25 nfan 𝑓 ( 𝑔𝐵𝑖 ∈ dom 𝑔 )
27 nfv 𝑓 ( 𝑔𝑖 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 )
28 26 27 nfim 𝑓 ( ( 𝑔𝐵𝑖 ∈ dom 𝑔 ) → ( 𝑔𝑖 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) )
29 eleq1w ( 𝑓 = 𝑔 → ( 𝑓𝐵𝑔𝐵 ) )
30 dmeq ( 𝑓 = 𝑔 → dom 𝑓 = dom 𝑔 )
31 30 eleq2d ( 𝑓 = 𝑔 → ( 𝑖 ∈ dom 𝑓𝑖 ∈ dom 𝑔 ) )
32 29 31 anbi12d ( 𝑓 = 𝑔 → ( ( 𝑓𝐵𝑖 ∈ dom 𝑓 ) ↔ ( 𝑔𝐵𝑖 ∈ dom 𝑔 ) ) )
33 fveq1 ( 𝑓 = 𝑔 → ( 𝑓𝑖 ) = ( 𝑔𝑖 ) )
34 33 sseq1d ( 𝑓 = 𝑔 → ( ( 𝑓𝑖 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ↔ ( 𝑔𝑖 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) )
35 32 34 imbi12d ( 𝑓 = 𝑔 → ( ( ( 𝑓𝐵𝑖 ∈ dom 𝑓 ) → ( 𝑓𝑖 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ↔ ( ( 𝑔𝐵𝑖 ∈ dom 𝑔 ) → ( 𝑔𝑖 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) )
36 ssiun2 ( 𝑖 ∈ dom 𝑓 → ( 𝑓𝑖 ) ⊆ 𝑖 ∈ dom 𝑓 ( 𝑓𝑖 ) )
37 ssiun2 ( 𝑓𝐵 𝑖 ∈ dom 𝑓 ( 𝑓𝑖 ) ⊆ 𝑓𝐵 𝑖 ∈ dom 𝑓 ( 𝑓𝑖 ) )
38 1 2 3 4 bnj882 trCl ( 𝑋 , 𝐴 , 𝑅 ) = 𝑓𝐵 𝑖 ∈ dom 𝑓 ( 𝑓𝑖 )
39 37 38 sseqtrrdi ( 𝑓𝐵 𝑖 ∈ dom 𝑓 ( 𝑓𝑖 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) )
40 36 39 sylan9ssr ( ( 𝑓𝐵𝑖 ∈ dom 𝑓 ) → ( 𝑓𝑖 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) )
41 28 35 40 chvarfv ( ( 𝑔𝐵𝑖 ∈ dom 𝑔 ) → ( 𝑔𝑖 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) )
42 22 41 speivw 𝑖 ( ( 𝑔𝐵𝑗 ∈ dom 𝑔 ) → ( 𝑔𝑗 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) )
43 16 42 bnj1131 ( ( 𝑔𝐵𝑗 ∈ dom 𝑔 ) → ( 𝑔𝑗 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) )