Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1415.1 |
⊢ 𝐵 = { 𝑑 ∣ ( 𝑑 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) } |
2 |
|
bnj1415.2 |
⊢ 𝑌 = 〈 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
3 |
|
bnj1415.3 |
⊢ 𝐶 = { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } |
4 |
|
bnj1415.4 |
⊢ ( 𝜏 ↔ ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) ) |
5 |
|
bnj1415.5 |
⊢ 𝐷 = { 𝑥 ∈ 𝐴 ∣ ¬ ∃ 𝑓 𝜏 } |
6 |
|
bnj1415.6 |
⊢ ( 𝜓 ↔ ( 𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅ ) ) |
7 |
|
bnj1415.7 |
⊢ ( 𝜒 ↔ ( 𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀ 𝑦 ∈ 𝐷 ¬ 𝑦 𝑅 𝑥 ) ) |
8 |
|
bnj1415.8 |
⊢ ( 𝜏′ ↔ [ 𝑦 / 𝑥 ] 𝜏 ) |
9 |
|
bnj1415.9 |
⊢ 𝐻 = { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ } |
10 |
|
bnj1415.10 |
⊢ 𝑃 = ∪ 𝐻 |
11 |
6
|
simplbi |
⊢ ( 𝜓 → 𝑅 FrSe 𝐴 ) |
12 |
7 11
|
bnj835 |
⊢ ( 𝜒 → 𝑅 FrSe 𝐴 ) |
13 |
5 7
|
bnj1212 |
⊢ ( 𝜒 → 𝑥 ∈ 𝐴 ) |
14 |
|
eqid |
⊢ ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∪ ∪ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) = ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∪ ∪ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
15 |
14
|
bnj1414 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → trCl ( 𝑥 , 𝐴 , 𝑅 ) = ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∪ ∪ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
16 |
12 13 15
|
syl2anc |
⊢ ( 𝜒 → trCl ( 𝑥 , 𝐴 , 𝑅 ) = ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∪ ∪ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
17 |
|
iunun |
⊢ ∪ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) = ( ∪ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) { 𝑦 } ∪ ∪ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
18 |
|
iunid |
⊢ ∪ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) { 𝑦 } = pred ( 𝑥 , 𝐴 , 𝑅 ) |
19 |
18
|
uneq1i |
⊢ ( ∪ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) { 𝑦 } ∪ ∪ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) = ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∪ ∪ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
20 |
17 19
|
eqtri |
⊢ ∪ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) = ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∪ ∪ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
21 |
|
biid |
⊢ ( ( 𝜒 ∧ 𝑧 ∈ ∪ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ( 𝜒 ∧ 𝑧 ∈ ∪ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
22 |
|
biid |
⊢ ( ( ( 𝜒 ∧ 𝑧 ∈ ∪ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ∧ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ( ( 𝜒 ∧ 𝑧 ∈ ∪ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ∧ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
23 |
1 2 3 4 5 6 7 8 9 10 21 22
|
bnj1398 |
⊢ ( 𝜒 → ∪ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) = dom 𝑃 ) |
24 |
20 23
|
eqtr3id |
⊢ ( 𝜒 → ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∪ ∪ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) = dom 𝑃 ) |
25 |
16 24
|
eqtr2d |
⊢ ( 𝜒 → dom 𝑃 = trCl ( 𝑥 , 𝐴 , 𝑅 ) ) |