Metamath Proof Explorer


Theorem bnj1415

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1415.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
bnj1415.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
bnj1415.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
bnj1415.4 ( 𝜏 ↔ ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) )
bnj1415.5 𝐷 = { 𝑥𝐴 ∣ ¬ ∃ 𝑓 𝜏 }
bnj1415.6 ( 𝜓 ↔ ( 𝑅 FrSe 𝐴𝐷 ≠ ∅ ) )
bnj1415.7 ( 𝜒 ↔ ( 𝜓𝑥𝐷 ∧ ∀ 𝑦𝐷 ¬ 𝑦 𝑅 𝑥 ) )
bnj1415.8 ( 𝜏′[ 𝑦 / 𝑥 ] 𝜏 )
bnj1415.9 𝐻 = { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ }
bnj1415.10 𝑃 = 𝐻
Assertion bnj1415 ( 𝜒 → dom 𝑃 = trCl ( 𝑥 , 𝐴 , 𝑅 ) )

Proof

Step Hyp Ref Expression
1 bnj1415.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
2 bnj1415.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
3 bnj1415.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
4 bnj1415.4 ( 𝜏 ↔ ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) )
5 bnj1415.5 𝐷 = { 𝑥𝐴 ∣ ¬ ∃ 𝑓 𝜏 }
6 bnj1415.6 ( 𝜓 ↔ ( 𝑅 FrSe 𝐴𝐷 ≠ ∅ ) )
7 bnj1415.7 ( 𝜒 ↔ ( 𝜓𝑥𝐷 ∧ ∀ 𝑦𝐷 ¬ 𝑦 𝑅 𝑥 ) )
8 bnj1415.8 ( 𝜏′[ 𝑦 / 𝑥 ] 𝜏 )
9 bnj1415.9 𝐻 = { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ }
10 bnj1415.10 𝑃 = 𝐻
11 6 simplbi ( 𝜓𝑅 FrSe 𝐴 )
12 7 11 bnj835 ( 𝜒𝑅 FrSe 𝐴 )
13 5 7 bnj1212 ( 𝜒𝑥𝐴 )
14 eqid ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∪ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) = ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∪ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) )
15 14 bnj1414 ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → trCl ( 𝑥 , 𝐴 , 𝑅 ) = ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∪ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) )
16 12 13 15 syl2anc ( 𝜒 → trCl ( 𝑥 , 𝐴 , 𝑅 ) = ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∪ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) )
17 iunun 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) = ( 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) { 𝑦 } ∪ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) )
18 iunid 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) { 𝑦 } = pred ( 𝑥 , 𝐴 , 𝑅 )
19 18 uneq1i ( 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) { 𝑦 } ∪ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) = ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∪ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) )
20 17 19 eqtri 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) = ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∪ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) )
21 biid ( ( 𝜒𝑧 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ( 𝜒𝑧 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) )
22 biid ( ( ( 𝜒𝑧 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ∧ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ( ( 𝜒𝑧 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ∧ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) )
23 1 2 3 4 5 6 7 8 9 10 21 22 bnj1398 ( 𝜒 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) = dom 𝑃 )
24 20 23 eqtr3id ( 𝜒 → ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∪ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) = dom 𝑃 )
25 16 24 eqtr2d ( 𝜒 → dom 𝑃 = trCl ( 𝑥 , 𝐴 , 𝑅 ) )