| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1518.1 |
⊢ 𝐵 = { 𝑑 ∣ ( 𝑑 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) } |
| 2 |
|
bnj1518.2 |
⊢ 𝑌 = 〈 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
| 3 |
|
bnj1518.3 |
⊢ 𝐶 = { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } |
| 4 |
|
bnj1518.4 |
⊢ 𝐹 = ∪ 𝐶 |
| 5 |
|
bnj1518.5 |
⊢ ( 𝜑 ↔ ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) |
| 6 |
|
bnj1518.6 |
⊢ ( 𝜓 ↔ ( 𝜑 ∧ 𝑓 ∈ 𝐶 ∧ 𝑥 ∈ dom 𝑓 ) ) |
| 7 |
|
nfv |
⊢ Ⅎ 𝑑 𝜑 |
| 8 |
|
nfre1 |
⊢ Ⅎ 𝑑 ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) |
| 9 |
8
|
nfab |
⊢ Ⅎ 𝑑 { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } |
| 10 |
3 9
|
nfcxfr |
⊢ Ⅎ 𝑑 𝐶 |
| 11 |
10
|
nfcri |
⊢ Ⅎ 𝑑 𝑓 ∈ 𝐶 |
| 12 |
|
nfv |
⊢ Ⅎ 𝑑 𝑥 ∈ dom 𝑓 |
| 13 |
7 11 12
|
nf3an |
⊢ Ⅎ 𝑑 ( 𝜑 ∧ 𝑓 ∈ 𝐶 ∧ 𝑥 ∈ dom 𝑓 ) |
| 14 |
6 13
|
nfxfr |
⊢ Ⅎ 𝑑 𝜓 |
| 15 |
14
|
nf5ri |
⊢ ( 𝜓 → ∀ 𝑑 𝜓 ) |