Metamath Proof Explorer


Theorem bnj153

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj153.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )
bnj153.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
bnj153.3 𝐷 = ( ω ∖ { ∅ } )
bnj153.4 ( 𝜃 ↔ ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) )
bnj153.5 ( 𝜏 ↔ ∀ 𝑚𝐷 ( 𝑚 E 𝑛[ 𝑚 / 𝑛 ] 𝜃 ) )
Assertion bnj153 ( 𝑛 = 1o → ( ( 𝑛𝐷𝜏 ) → 𝜃 ) )

Proof

Step Hyp Ref Expression
1 bnj153.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )
2 bnj153.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
3 bnj153.3 𝐷 = ( ω ∖ { ∅ } )
4 bnj153.4 ( 𝜃 ↔ ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) )
5 bnj153.5 ( 𝜏 ↔ ∀ 𝑚𝐷 ( 𝑚 E 𝑛[ 𝑚 / 𝑛 ] 𝜃 ) )
6 biid ( ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ↔ ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ( 𝑓 Fn 𝑛𝜑𝜓 ) ) )
7 biid ( [ 1o / 𝑛 ] 𝜑[ 1o / 𝑛 ] 𝜑 )
8 1 7 bnj118 ( [ 1o / 𝑛 ] 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )
9 8 bicomi ( ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ↔ [ 1o / 𝑛 ] 𝜑 )
10 bnj105 1o ∈ V
11 2 10 bnj92 ( [ 1o / 𝑛 ] 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
12 11 bicomi ( ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ [ 1o / 𝑛 ] 𝜓 )
13 biid ( [ 1o / 𝑛 ] 𝜃[ 1o / 𝑛 ] 𝜃 )
14 biid ( ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ∃ 𝑓 ( 𝑓 Fn 1o ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) ↔ ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ∃ 𝑓 ( 𝑓 Fn 1o ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) )
15 biid ( ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ∃* 𝑓 ( 𝑓 Fn 1o ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) ↔ ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ∃* 𝑓 ( 𝑓 Fn 1o ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) )
16 biid ( [ 1o / 𝑛 ] ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ↔ [ 1o / 𝑛 ] ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ( 𝑓 Fn 𝑛𝜑𝜓 ) ) )
17 biid ( [ 1o / 𝑛 ] 𝜓[ 1o / 𝑛 ] 𝜓 )
18 6 16 7 17 bnj121 ( [ 1o / 𝑛 ] ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ↔ ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ( 𝑓 Fn 1o[ 1o / 𝑛 ] 𝜑[ 1o / 𝑛 ] 𝜓 ) ) )
19 8 anbi2i ( ( 𝑓 Fn 1o[ 1o / 𝑛 ] 𝜑 ) ↔ ( 𝑓 Fn 1o ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) )
20 19 11 anbi12i ( ( ( 𝑓 Fn 1o[ 1o / 𝑛 ] 𝜑 ) ∧ [ 1o / 𝑛 ] 𝜓 ) ↔ ( ( 𝑓 Fn 1o ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) )
21 df-3an ( ( 𝑓 Fn 1o[ 1o / 𝑛 ] 𝜑[ 1o / 𝑛 ] 𝜓 ) ↔ ( ( 𝑓 Fn 1o[ 1o / 𝑛 ] 𝜑 ) ∧ [ 1o / 𝑛 ] 𝜓 ) )
22 df-3an ( ( 𝑓 Fn 1o ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ( ( 𝑓 Fn 1o ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) )
23 20 21 22 3bitr4i ( ( 𝑓 Fn 1o[ 1o / 𝑛 ] 𝜑[ 1o / 𝑛 ] 𝜓 ) ↔ ( 𝑓 Fn 1o ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) )
24 23 imbi2i ( ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ( 𝑓 Fn 1o[ 1o / 𝑛 ] 𝜑[ 1o / 𝑛 ] 𝜓 ) ) ↔ ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ( 𝑓 Fn 1o ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) )
25 18 24 bitri ( [ 1o / 𝑛 ] ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ↔ ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ( 𝑓 Fn 1o ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) )
26 25 bicomi ( ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ( 𝑓 Fn 1o ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) ↔ [ 1o / 𝑛 ] ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ( 𝑓 Fn 𝑛𝜑𝜓 ) ) )
27 eqid { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } = { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ }
28 biid ( [ { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } / 𝑓 ] ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ↔ [ { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } / 𝑓 ] ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )
29 biid ( [ { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } / 𝑓 ]𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ [ { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } / 𝑓 ]𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
30 26 sbcbii ( [ { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } / 𝑓 ] ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ( 𝑓 Fn 1o ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) ↔ [ { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } / 𝑓 ] [ 1o / 𝑛 ] ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ( 𝑓 Fn 𝑛𝜑𝜓 ) ) )
31 biid ( [ { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } / 𝑓 ] [ 1o / 𝑛 ] 𝜑[ { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } / 𝑓 ] [ 1o / 𝑛 ] 𝜑 )
32 biid ( [ { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } / 𝑓 ] [ 1o / 𝑛 ] 𝜓[ { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } / 𝑓 ] [ 1o / 𝑛 ] 𝜓 )
33 biid ( [ { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } / 𝑓 ] [ 1o / 𝑛 ] ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ↔ [ { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } / 𝑓 ] [ 1o / 𝑛 ] ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ( 𝑓 Fn 𝑛𝜑𝜓 ) ) )
34 27 31 32 33 18 bnj124 ( [ { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } / 𝑓 ] [ 1o / 𝑛 ] ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ↔ ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ( { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } Fn 1o[ { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } / 𝑓 ] [ 1o / 𝑛 ] 𝜑[ { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } / 𝑓 ] [ 1o / 𝑛 ] 𝜓 ) ) )
35 1 7 31 27 bnj125 ( [ { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } / 𝑓 ] [ 1o / 𝑛 ] 𝜑 ↔ ( { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )
36 35 anbi2i ( ( { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } Fn 1o[ { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } / 𝑓 ] [ 1o / 𝑛 ] 𝜑 ) ↔ ( { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } Fn 1o ∧ ( { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) )
37 2 17 32 27 bnj126 ( [ { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } / 𝑓 ] [ 1o / 𝑛 ] 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } ‘ suc 𝑖 ) = 𝑦 ∈ ( { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
38 36 37 anbi12i ( ( ( { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } Fn 1o[ { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } / 𝑓 ] [ 1o / 𝑛 ] 𝜑 ) ∧ [ { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } / 𝑓 ] [ 1o / 𝑛 ] 𝜓 ) ↔ ( ( { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } Fn 1o ∧ ( { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } ‘ suc 𝑖 ) = 𝑦 ∈ ( { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) )
39 df-3an ( ( { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } Fn 1o[ { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } / 𝑓 ] [ 1o / 𝑛 ] 𝜑[ { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } / 𝑓 ] [ 1o / 𝑛 ] 𝜓 ) ↔ ( ( { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } Fn 1o[ { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } / 𝑓 ] [ 1o / 𝑛 ] 𝜑 ) ∧ [ { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } / 𝑓 ] [ 1o / 𝑛 ] 𝜓 ) )
40 df-3an ( ( { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } Fn 1o ∧ ( { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } ‘ suc 𝑖 ) = 𝑦 ∈ ( { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ( ( { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } Fn 1o ∧ ( { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } ‘ suc 𝑖 ) = 𝑦 ∈ ( { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) )
41 38 39 40 3bitr4i ( ( { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } Fn 1o[ { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } / 𝑓 ] [ 1o / 𝑛 ] 𝜑[ { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } / 𝑓 ] [ 1o / 𝑛 ] 𝜓 ) ↔ ( { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } Fn 1o ∧ ( { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } ‘ suc 𝑖 ) = 𝑦 ∈ ( { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) )
42 41 imbi2i ( ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ( { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } Fn 1o[ { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } / 𝑓 ] [ 1o / 𝑛 ] 𝜑[ { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } / 𝑓 ] [ 1o / 𝑛 ] 𝜓 ) ) ↔ ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ( { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } Fn 1o ∧ ( { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } ‘ suc 𝑖 ) = 𝑦 ∈ ( { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) )
43 34 42 bitri ( [ { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } / 𝑓 ] [ 1o / 𝑛 ] ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ↔ ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ( { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } Fn 1o ∧ ( { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } ‘ suc 𝑖 ) = 𝑦 ∈ ( { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) )
44 30 43 bitr2i ( ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ( { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } Fn 1o ∧ ( { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } ‘ suc 𝑖 ) = 𝑦 ∈ ( { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) ↔ [ { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ } / 𝑓 ] ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ( 𝑓 Fn 1o ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) )
45 biid ( ( 𝑓 Fn 1o ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ( 𝑓 Fn 1o ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) )
46 biid ( ( 𝑓 Fn 1o[ 1o / 𝑛 ] 𝜑[ 1o / 𝑛 ] 𝜓 ) ↔ ( 𝑓 Fn 1o[ 1o / 𝑛 ] 𝜑[ 1o / 𝑛 ] 𝜓 ) )
47 biid ( [ 𝑔 / 𝑓 ] ( 𝑓 Fn 1o[ 1o / 𝑛 ] 𝜑[ 1o / 𝑛 ] 𝜓 ) ↔ [ 𝑔 / 𝑓 ] ( 𝑓 Fn 1o[ 1o / 𝑛 ] 𝜑[ 1o / 𝑛 ] 𝜓 ) )
48 biid ( [ 𝑔 / 𝑓 ] [ 1o / 𝑛 ] 𝜑[ 𝑔 / 𝑓 ] [ 1o / 𝑛 ] 𝜑 )
49 biid ( [ 𝑔 / 𝑓 ] [ 1o / 𝑛 ] 𝜓[ 𝑔 / 𝑓 ] [ 1o / 𝑛 ] 𝜓 )
50 46 47 48 49 bnj156 ( [ 𝑔 / 𝑓 ] ( 𝑓 Fn 1o[ 1o / 𝑛 ] 𝜑[ 1o / 𝑛 ] 𝜓 ) ↔ ( 𝑔 Fn 1o[ 𝑔 / 𝑓 ] [ 1o / 𝑛 ] 𝜑[ 𝑔 / 𝑓 ] [ 1o / 𝑛 ] 𝜓 ) )
51 48 8 bnj154 ( [ 𝑔 / 𝑓 ] [ 1o / 𝑛 ] 𝜑 ↔ ( 𝑔 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )
52 51 anbi2i ( ( 𝑔 Fn 1o[ 𝑔 / 𝑓 ] [ 1o / 𝑛 ] 𝜑 ) ↔ ( 𝑔 Fn 1o ∧ ( 𝑔 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) )
53 17 11 bitri ( [ 1o / 𝑛 ] 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
54 49 53 bnj155 ( [ 𝑔 / 𝑓 ] [ 1o / 𝑛 ] 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑔 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑔𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
55 52 54 anbi12i ( ( ( 𝑔 Fn 1o[ 𝑔 / 𝑓 ] [ 1o / 𝑛 ] 𝜑 ) ∧ [ 𝑔 / 𝑓 ] [ 1o / 𝑛 ] 𝜓 ) ↔ ( ( 𝑔 Fn 1o ∧ ( 𝑔 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑔 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑔𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) )
56 df-3an ( ( 𝑔 Fn 1o[ 𝑔 / 𝑓 ] [ 1o / 𝑛 ] 𝜑[ 𝑔 / 𝑓 ] [ 1o / 𝑛 ] 𝜓 ) ↔ ( ( 𝑔 Fn 1o[ 𝑔 / 𝑓 ] [ 1o / 𝑛 ] 𝜑 ) ∧ [ 𝑔 / 𝑓 ] [ 1o / 𝑛 ] 𝜓 ) )
57 df-3an ( ( 𝑔 Fn 1o ∧ ( 𝑔 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑔 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑔𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ( ( 𝑔 Fn 1o ∧ ( 𝑔 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑔 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑔𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) )
58 55 56 57 3bitr4i ( ( 𝑔 Fn 1o[ 𝑔 / 𝑓 ] [ 1o / 𝑛 ] 𝜑[ 𝑔 / 𝑓 ] [ 1o / 𝑛 ] 𝜓 ) ↔ ( 𝑔 Fn 1o ∧ ( 𝑔 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑔 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑔𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) )
59 50 58 bitri ( [ 𝑔 / 𝑓 ] ( 𝑓 Fn 1o[ 1o / 𝑛 ] 𝜑[ 1o / 𝑛 ] 𝜓 ) ↔ ( 𝑔 Fn 1o ∧ ( 𝑔 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑔 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑔𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) )
60 23 sbcbii ( [ 𝑔 / 𝑓 ] ( 𝑓 Fn 1o[ 1o / 𝑛 ] 𝜑[ 1o / 𝑛 ] 𝜓 ) ↔ [ 𝑔 / 𝑓 ] ( 𝑓 Fn 1o ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) )
61 59 60 bitr3i ( ( 𝑔 Fn 1o ∧ ( 𝑔 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑔 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑔𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ [ 𝑔 / 𝑓 ] ( 𝑓 Fn 1o ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) )
62 biid ( [ 𝑔 / 𝑓 ] ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ↔ [ 𝑔 / 𝑓 ] ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )
63 biid ( [ 𝑔 / 𝑓 ]𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ [ 𝑔 / 𝑓 ]𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
64 1 2 3 4 5 6 9 12 13 14 15 26 27 28 29 44 45 61 62 63 bnj151 ( 𝑛 = 1o → ( ( 𝑛𝐷𝜏 ) → 𝜃 ) )