| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brdom3.2 |
⊢ 𝐵 ∈ V |
| 2 |
1
|
brdom3 |
⊢ ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑓 ( ∀ 𝑥 ∃* 𝑦 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑓 𝑥 ) ) |
| 3 |
|
mormo |
⊢ ( ∃* 𝑦 𝑥 𝑓 𝑦 → ∃* 𝑦 ∈ 𝐴 𝑥 𝑓 𝑦 ) |
| 4 |
3
|
alimi |
⊢ ( ∀ 𝑥 ∃* 𝑦 𝑥 𝑓 𝑦 → ∀ 𝑥 ∃* 𝑦 ∈ 𝐴 𝑥 𝑓 𝑦 ) |
| 5 |
|
alral |
⊢ ( ∀ 𝑥 ∃* 𝑦 ∈ 𝐴 𝑥 𝑓 𝑦 → ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ∈ 𝐴 𝑥 𝑓 𝑦 ) |
| 6 |
4 5
|
syl |
⊢ ( ∀ 𝑥 ∃* 𝑦 𝑥 𝑓 𝑦 → ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ∈ 𝐴 𝑥 𝑓 𝑦 ) |
| 7 |
6
|
anim1i |
⊢ ( ( ∀ 𝑥 ∃* 𝑦 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑓 𝑥 ) → ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ∈ 𝐴 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑓 𝑥 ) ) |
| 8 |
7
|
eximi |
⊢ ( ∃ 𝑓 ( ∀ 𝑥 ∃* 𝑦 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑓 𝑥 ) → ∃ 𝑓 ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ∈ 𝐴 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑓 𝑥 ) ) |
| 9 |
2 8
|
sylbi |
⊢ ( 𝐴 ≼ 𝐵 → ∃ 𝑓 ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ∈ 𝐴 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑓 𝑥 ) ) |
| 10 |
|
inss2 |
⊢ ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ⊆ ( 𝐵 × 𝐴 ) |
| 11 |
|
dmss |
⊢ ( ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ⊆ ( 𝐵 × 𝐴 ) → dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ⊆ dom ( 𝐵 × 𝐴 ) ) |
| 12 |
10 11
|
ax-mp |
⊢ dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ⊆ dom ( 𝐵 × 𝐴 ) |
| 13 |
|
dmxpss |
⊢ dom ( 𝐵 × 𝐴 ) ⊆ 𝐵 |
| 14 |
12 13
|
sstri |
⊢ dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ⊆ 𝐵 |
| 15 |
14
|
sseli |
⊢ ( 𝑥 ∈ dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) → 𝑥 ∈ 𝐵 ) |
| 16 |
10
|
rnssi |
⊢ ran ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ⊆ ran ( 𝐵 × 𝐴 ) |
| 17 |
|
rnxpss |
⊢ ran ( 𝐵 × 𝐴 ) ⊆ 𝐴 |
| 18 |
16 17
|
sstri |
⊢ ran ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ⊆ 𝐴 |
| 19 |
18
|
sseli |
⊢ ( 𝑦 ∈ ran ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) → 𝑦 ∈ 𝐴 ) |
| 20 |
|
inss1 |
⊢ ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ⊆ 𝑓 |
| 21 |
20
|
ssbri |
⊢ ( 𝑥 ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) 𝑦 → 𝑥 𝑓 𝑦 ) |
| 22 |
19 21
|
anim12i |
⊢ ( ( 𝑦 ∈ ran ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ∧ 𝑥 ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) 𝑦 ) → ( 𝑦 ∈ 𝐴 ∧ 𝑥 𝑓 𝑦 ) ) |
| 23 |
22
|
moimi |
⊢ ( ∃* 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑥 𝑓 𝑦 ) → ∃* 𝑦 ( 𝑦 ∈ ran ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ∧ 𝑥 ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) 𝑦 ) ) |
| 24 |
|
df-rmo |
⊢ ( ∃* 𝑦 ∈ 𝐴 𝑥 𝑓 𝑦 ↔ ∃* 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑥 𝑓 𝑦 ) ) |
| 25 |
|
df-rmo |
⊢ ( ∃* 𝑦 ∈ ran ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) 𝑥 ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) 𝑦 ↔ ∃* 𝑦 ( 𝑦 ∈ ran ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ∧ 𝑥 ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) 𝑦 ) ) |
| 26 |
23 24 25
|
3imtr4i |
⊢ ( ∃* 𝑦 ∈ 𝐴 𝑥 𝑓 𝑦 → ∃* 𝑦 ∈ ran ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) 𝑥 ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) 𝑦 ) |
| 27 |
15 26
|
imim12i |
⊢ ( ( 𝑥 ∈ 𝐵 → ∃* 𝑦 ∈ 𝐴 𝑥 𝑓 𝑦 ) → ( 𝑥 ∈ dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) → ∃* 𝑦 ∈ ran ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) 𝑥 ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) 𝑦 ) ) |
| 28 |
27
|
ralimi2 |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ∈ 𝐴 𝑥 𝑓 𝑦 → ∀ 𝑥 ∈ dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ∃* 𝑦 ∈ ran ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) 𝑥 ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) 𝑦 ) |
| 29 |
|
relinxp |
⊢ Rel ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) |
| 30 |
28 29
|
jctil |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ∈ 𝐴 𝑥 𝑓 𝑦 → ( Rel ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ∧ ∀ 𝑥 ∈ dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ∃* 𝑦 ∈ ran ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) 𝑥 ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) 𝑦 ) ) |
| 31 |
|
dffun9 |
⊢ ( Fun ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ↔ ( Rel ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ∧ ∀ 𝑥 ∈ dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ∃* 𝑦 ∈ ran ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) 𝑥 ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) 𝑦 ) ) |
| 32 |
30 31
|
sylibr |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ∈ 𝐴 𝑥 𝑓 𝑦 → Fun ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ) |
| 33 |
32
|
funfnd |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ∈ 𝐴 𝑥 𝑓 𝑦 → ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) Fn dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ) |
| 34 |
|
rninxp |
⊢ ( ran ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) = 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑓 𝑥 ) |
| 35 |
34
|
biimpri |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑓 𝑥 → ran ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) = 𝐴 ) |
| 36 |
33 35
|
anim12i |
⊢ ( ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ∈ 𝐴 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑓 𝑥 ) → ( ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) Fn dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ∧ ran ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) = 𝐴 ) ) |
| 37 |
|
df-fo |
⊢ ( ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) : dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) –onto→ 𝐴 ↔ ( ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) Fn dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ∧ ran ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) = 𝐴 ) ) |
| 38 |
36 37
|
sylibr |
⊢ ( ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ∈ 𝐴 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑓 𝑥 ) → ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) : dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) –onto→ 𝐴 ) |
| 39 |
|
vex |
⊢ 𝑓 ∈ V |
| 40 |
39
|
inex1 |
⊢ ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ∈ V |
| 41 |
40
|
dmex |
⊢ dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ∈ V |
| 42 |
41
|
fodom |
⊢ ( ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) : dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) –onto→ 𝐴 → 𝐴 ≼ dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ) |
| 43 |
38 42
|
syl |
⊢ ( ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ∈ 𝐴 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑓 𝑥 ) → 𝐴 ≼ dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ) |
| 44 |
|
ssdomg |
⊢ ( 𝐵 ∈ V → ( dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ⊆ 𝐵 → dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ≼ 𝐵 ) ) |
| 45 |
1 14 44
|
mp2 |
⊢ dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ≼ 𝐵 |
| 46 |
|
domtr |
⊢ ( ( 𝐴 ≼ dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ∧ dom ( 𝑓 ∩ ( 𝐵 × 𝐴 ) ) ≼ 𝐵 ) → 𝐴 ≼ 𝐵 ) |
| 47 |
43 45 46
|
sylancl |
⊢ ( ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ∈ 𝐴 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑓 𝑥 ) → 𝐴 ≼ 𝐵 ) |
| 48 |
47
|
exlimiv |
⊢ ( ∃ 𝑓 ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ∈ 𝐴 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑓 𝑥 ) → 𝐴 ≼ 𝐵 ) |
| 49 |
9 48
|
impbii |
⊢ ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑓 ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ∈ 𝐴 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 𝑓 𝑥 ) ) |