Step |
Hyp |
Ref |
Expression |
1 |
|
brpprod.1 |
⊢ 𝑋 ∈ V |
2 |
|
brpprod.2 |
⊢ 𝑌 ∈ V |
3 |
|
brpprod.3 |
⊢ 𝑍 ∈ V |
4 |
|
brpprod.4 |
⊢ 𝑊 ∈ V |
5 |
|
df-pprod |
⊢ pprod ( 𝐴 , 𝐵 ) = ( ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) ⊗ ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) ) |
6 |
5
|
breqi |
⊢ ( 〈 𝑋 , 𝑌 〉 pprod ( 𝐴 , 𝐵 ) 〈 𝑍 , 𝑊 〉 ↔ 〈 𝑋 , 𝑌 〉 ( ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) ⊗ ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) ) 〈 𝑍 , 𝑊 〉 ) |
7 |
|
opex |
⊢ 〈 𝑋 , 𝑌 〉 ∈ V |
8 |
7 3 4
|
brtxp |
⊢ ( 〈 𝑋 , 𝑌 〉 ( ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) ⊗ ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) ) 〈 𝑍 , 𝑊 〉 ↔ ( 〈 𝑋 , 𝑌 〉 ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) 𝑍 ∧ 〈 𝑋 , 𝑌 〉 ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) 𝑊 ) ) |
9 |
7 3
|
brco |
⊢ ( 〈 𝑋 , 𝑌 〉 ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) 𝑍 ↔ ∃ 𝑥 ( 〈 𝑋 , 𝑌 〉 ( 1st ↾ ( V × V ) ) 𝑥 ∧ 𝑥 𝐴 𝑍 ) ) |
10 |
1 2
|
opelvv |
⊢ 〈 𝑋 , 𝑌 〉 ∈ ( V × V ) |
11 |
|
vex |
⊢ 𝑥 ∈ V |
12 |
11
|
brresi |
⊢ ( 〈 𝑋 , 𝑌 〉 ( 1st ↾ ( V × V ) ) 𝑥 ↔ ( 〈 𝑋 , 𝑌 〉 ∈ ( V × V ) ∧ 〈 𝑋 , 𝑌 〉 1st 𝑥 ) ) |
13 |
10 12
|
mpbiran |
⊢ ( 〈 𝑋 , 𝑌 〉 ( 1st ↾ ( V × V ) ) 𝑥 ↔ 〈 𝑋 , 𝑌 〉 1st 𝑥 ) |
14 |
1 2
|
br1steq |
⊢ ( 〈 𝑋 , 𝑌 〉 1st 𝑥 ↔ 𝑥 = 𝑋 ) |
15 |
13 14
|
bitri |
⊢ ( 〈 𝑋 , 𝑌 〉 ( 1st ↾ ( V × V ) ) 𝑥 ↔ 𝑥 = 𝑋 ) |
16 |
15
|
anbi1i |
⊢ ( ( 〈 𝑋 , 𝑌 〉 ( 1st ↾ ( V × V ) ) 𝑥 ∧ 𝑥 𝐴 𝑍 ) ↔ ( 𝑥 = 𝑋 ∧ 𝑥 𝐴 𝑍 ) ) |
17 |
16
|
exbii |
⊢ ( ∃ 𝑥 ( 〈 𝑋 , 𝑌 〉 ( 1st ↾ ( V × V ) ) 𝑥 ∧ 𝑥 𝐴 𝑍 ) ↔ ∃ 𝑥 ( 𝑥 = 𝑋 ∧ 𝑥 𝐴 𝑍 ) ) |
18 |
|
breq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 𝐴 𝑍 ↔ 𝑋 𝐴 𝑍 ) ) |
19 |
1 18
|
ceqsexv |
⊢ ( ∃ 𝑥 ( 𝑥 = 𝑋 ∧ 𝑥 𝐴 𝑍 ) ↔ 𝑋 𝐴 𝑍 ) |
20 |
9 17 19
|
3bitri |
⊢ ( 〈 𝑋 , 𝑌 〉 ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) 𝑍 ↔ 𝑋 𝐴 𝑍 ) |
21 |
7 4
|
brco |
⊢ ( 〈 𝑋 , 𝑌 〉 ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) 𝑊 ↔ ∃ 𝑦 ( 〈 𝑋 , 𝑌 〉 ( 2nd ↾ ( V × V ) ) 𝑦 ∧ 𝑦 𝐵 𝑊 ) ) |
22 |
|
vex |
⊢ 𝑦 ∈ V |
23 |
22
|
brresi |
⊢ ( 〈 𝑋 , 𝑌 〉 ( 2nd ↾ ( V × V ) ) 𝑦 ↔ ( 〈 𝑋 , 𝑌 〉 ∈ ( V × V ) ∧ 〈 𝑋 , 𝑌 〉 2nd 𝑦 ) ) |
24 |
10 23
|
mpbiran |
⊢ ( 〈 𝑋 , 𝑌 〉 ( 2nd ↾ ( V × V ) ) 𝑦 ↔ 〈 𝑋 , 𝑌 〉 2nd 𝑦 ) |
25 |
1 2
|
br2ndeq |
⊢ ( 〈 𝑋 , 𝑌 〉 2nd 𝑦 ↔ 𝑦 = 𝑌 ) |
26 |
24 25
|
bitri |
⊢ ( 〈 𝑋 , 𝑌 〉 ( 2nd ↾ ( V × V ) ) 𝑦 ↔ 𝑦 = 𝑌 ) |
27 |
26
|
anbi1i |
⊢ ( ( 〈 𝑋 , 𝑌 〉 ( 2nd ↾ ( V × V ) ) 𝑦 ∧ 𝑦 𝐵 𝑊 ) ↔ ( 𝑦 = 𝑌 ∧ 𝑦 𝐵 𝑊 ) ) |
28 |
27
|
exbii |
⊢ ( ∃ 𝑦 ( 〈 𝑋 , 𝑌 〉 ( 2nd ↾ ( V × V ) ) 𝑦 ∧ 𝑦 𝐵 𝑊 ) ↔ ∃ 𝑦 ( 𝑦 = 𝑌 ∧ 𝑦 𝐵 𝑊 ) ) |
29 |
|
breq1 |
⊢ ( 𝑦 = 𝑌 → ( 𝑦 𝐵 𝑊 ↔ 𝑌 𝐵 𝑊 ) ) |
30 |
2 29
|
ceqsexv |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝑌 ∧ 𝑦 𝐵 𝑊 ) ↔ 𝑌 𝐵 𝑊 ) |
31 |
21 28 30
|
3bitri |
⊢ ( 〈 𝑋 , 𝑌 〉 ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) 𝑊 ↔ 𝑌 𝐵 𝑊 ) |
32 |
20 31
|
anbi12i |
⊢ ( ( 〈 𝑋 , 𝑌 〉 ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) 𝑍 ∧ 〈 𝑋 , 𝑌 〉 ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) 𝑊 ) ↔ ( 𝑋 𝐴 𝑍 ∧ 𝑌 𝐵 𝑊 ) ) |
33 |
6 8 32
|
3bitri |
⊢ ( 〈 𝑋 , 𝑌 〉 pprod ( 𝐴 , 𝐵 ) 〈 𝑍 , 𝑊 〉 ↔ ( 𝑋 𝐴 𝑍 ∧ 𝑌 𝐵 𝑊 ) ) |