Step |
Hyp |
Ref |
Expression |
1 |
|
brpprod.1 |
|- X e. _V |
2 |
|
brpprod.2 |
|- Y e. _V |
3 |
|
brpprod.3 |
|- Z e. _V |
4 |
|
brpprod.4 |
|- W e. _V |
5 |
|
df-pprod |
|- pprod ( A , B ) = ( ( A o. ( 1st |` ( _V X. _V ) ) ) (x) ( B o. ( 2nd |` ( _V X. _V ) ) ) ) |
6 |
5
|
breqi |
|- ( <. X , Y >. pprod ( A , B ) <. Z , W >. <-> <. X , Y >. ( ( A o. ( 1st |` ( _V X. _V ) ) ) (x) ( B o. ( 2nd |` ( _V X. _V ) ) ) ) <. Z , W >. ) |
7 |
|
opex |
|- <. X , Y >. e. _V |
8 |
7 3 4
|
brtxp |
|- ( <. X , Y >. ( ( A o. ( 1st |` ( _V X. _V ) ) ) (x) ( B o. ( 2nd |` ( _V X. _V ) ) ) ) <. Z , W >. <-> ( <. X , Y >. ( A o. ( 1st |` ( _V X. _V ) ) ) Z /\ <. X , Y >. ( B o. ( 2nd |` ( _V X. _V ) ) ) W ) ) |
9 |
7 3
|
brco |
|- ( <. X , Y >. ( A o. ( 1st |` ( _V X. _V ) ) ) Z <-> E. x ( <. X , Y >. ( 1st |` ( _V X. _V ) ) x /\ x A Z ) ) |
10 |
1 2
|
opelvv |
|- <. X , Y >. e. ( _V X. _V ) |
11 |
|
vex |
|- x e. _V |
12 |
11
|
brresi |
|- ( <. X , Y >. ( 1st |` ( _V X. _V ) ) x <-> ( <. X , Y >. e. ( _V X. _V ) /\ <. X , Y >. 1st x ) ) |
13 |
10 12
|
mpbiran |
|- ( <. X , Y >. ( 1st |` ( _V X. _V ) ) x <-> <. X , Y >. 1st x ) |
14 |
1 2
|
br1steq |
|- ( <. X , Y >. 1st x <-> x = X ) |
15 |
13 14
|
bitri |
|- ( <. X , Y >. ( 1st |` ( _V X. _V ) ) x <-> x = X ) |
16 |
15
|
anbi1i |
|- ( ( <. X , Y >. ( 1st |` ( _V X. _V ) ) x /\ x A Z ) <-> ( x = X /\ x A Z ) ) |
17 |
16
|
exbii |
|- ( E. x ( <. X , Y >. ( 1st |` ( _V X. _V ) ) x /\ x A Z ) <-> E. x ( x = X /\ x A Z ) ) |
18 |
|
breq1 |
|- ( x = X -> ( x A Z <-> X A Z ) ) |
19 |
1 18
|
ceqsexv |
|- ( E. x ( x = X /\ x A Z ) <-> X A Z ) |
20 |
9 17 19
|
3bitri |
|- ( <. X , Y >. ( A o. ( 1st |` ( _V X. _V ) ) ) Z <-> X A Z ) |
21 |
7 4
|
brco |
|- ( <. X , Y >. ( B o. ( 2nd |` ( _V X. _V ) ) ) W <-> E. y ( <. X , Y >. ( 2nd |` ( _V X. _V ) ) y /\ y B W ) ) |
22 |
|
vex |
|- y e. _V |
23 |
22
|
brresi |
|- ( <. X , Y >. ( 2nd |` ( _V X. _V ) ) y <-> ( <. X , Y >. e. ( _V X. _V ) /\ <. X , Y >. 2nd y ) ) |
24 |
10 23
|
mpbiran |
|- ( <. X , Y >. ( 2nd |` ( _V X. _V ) ) y <-> <. X , Y >. 2nd y ) |
25 |
1 2
|
br2ndeq |
|- ( <. X , Y >. 2nd y <-> y = Y ) |
26 |
24 25
|
bitri |
|- ( <. X , Y >. ( 2nd |` ( _V X. _V ) ) y <-> y = Y ) |
27 |
26
|
anbi1i |
|- ( ( <. X , Y >. ( 2nd |` ( _V X. _V ) ) y /\ y B W ) <-> ( y = Y /\ y B W ) ) |
28 |
27
|
exbii |
|- ( E. y ( <. X , Y >. ( 2nd |` ( _V X. _V ) ) y /\ y B W ) <-> E. y ( y = Y /\ y B W ) ) |
29 |
|
breq1 |
|- ( y = Y -> ( y B W <-> Y B W ) ) |
30 |
2 29
|
ceqsexv |
|- ( E. y ( y = Y /\ y B W ) <-> Y B W ) |
31 |
21 28 30
|
3bitri |
|- ( <. X , Y >. ( B o. ( 2nd |` ( _V X. _V ) ) ) W <-> Y B W ) |
32 |
20 31
|
anbi12i |
|- ( ( <. X , Y >. ( A o. ( 1st |` ( _V X. _V ) ) ) Z /\ <. X , Y >. ( B o. ( 2nd |` ( _V X. _V ) ) ) W ) <-> ( X A Z /\ Y B W ) ) |
33 |
6 8 32
|
3bitri |
|- ( <. X , Y >. pprod ( A , B ) <. Z , W >. <-> ( X A Z /\ Y B W ) ) |