Step |
Hyp |
Ref |
Expression |
1 |
|
df-pprod |
⊢ pprod ( 𝐴 , 𝐵 ) = ( ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) ⊗ ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) ) |
2 |
|
txprel |
⊢ Rel ( ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) ⊗ ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) ) |
3 |
|
txpss3v |
⊢ ( ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) ⊗ ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) ) ⊆ ( V × ( V × V ) ) |
4 |
3
|
sseli |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) ⊗ ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) ) → 〈 𝑥 , 𝑦 〉 ∈ ( V × ( V × V ) ) ) |
5 |
|
opelxp2 |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( V × ( V × V ) ) → 𝑦 ∈ ( V × V ) ) |
6 |
4 5
|
syl |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) ⊗ ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) ) → 𝑦 ∈ ( V × V ) ) |
7 |
|
elvv |
⊢ ( 𝑦 ∈ ( V × V ) ↔ ∃ 𝑧 ∃ 𝑤 𝑦 = 〈 𝑧 , 𝑤 〉 ) |
8 |
|
opeq2 |
⊢ ( 𝑦 = 〈 𝑧 , 𝑤 〉 → 〈 𝑥 , 𝑦 〉 = 〈 𝑥 , 〈 𝑧 , 𝑤 〉 〉 ) |
9 |
8
|
eleq1d |
⊢ ( 𝑦 = 〈 𝑧 , 𝑤 〉 → ( 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) ⊗ ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) ) ↔ 〈 𝑥 , 〈 𝑧 , 𝑤 〉 〉 ∈ ( ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) ⊗ ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) ) ) ) |
10 |
|
df-br |
⊢ ( 𝑥 ( ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) ⊗ ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) ) 〈 𝑧 , 𝑤 〉 ↔ 〈 𝑥 , 〈 𝑧 , 𝑤 〉 〉 ∈ ( ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) ⊗ ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) ) ) |
11 |
|
vex |
⊢ 𝑥 ∈ V |
12 |
|
vex |
⊢ 𝑧 ∈ V |
13 |
|
vex |
⊢ 𝑤 ∈ V |
14 |
11 12 13
|
brtxp |
⊢ ( 𝑥 ( ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) ⊗ ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) ) 〈 𝑧 , 𝑤 〉 ↔ ( 𝑥 ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) 𝑧 ∧ 𝑥 ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) 𝑤 ) ) |
15 |
11 12
|
brco |
⊢ ( 𝑥 ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) 𝑧 ↔ ∃ 𝑦 ( 𝑥 ( 1st ↾ ( V × V ) ) 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) |
16 |
|
vex |
⊢ 𝑦 ∈ V |
17 |
16
|
brresi |
⊢ ( 𝑥 ( 1st ↾ ( V × V ) ) 𝑦 ↔ ( 𝑥 ∈ ( V × V ) ∧ 𝑥 1st 𝑦 ) ) |
18 |
17
|
simplbi |
⊢ ( 𝑥 ( 1st ↾ ( V × V ) ) 𝑦 → 𝑥 ∈ ( V × V ) ) |
19 |
18
|
adantr |
⊢ ( ( 𝑥 ( 1st ↾ ( V × V ) ) 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 ∈ ( V × V ) ) |
20 |
19
|
exlimiv |
⊢ ( ∃ 𝑦 ( 𝑥 ( 1st ↾ ( V × V ) ) 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 ∈ ( V × V ) ) |
21 |
15 20
|
sylbi |
⊢ ( 𝑥 ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) 𝑧 → 𝑥 ∈ ( V × V ) ) |
22 |
21
|
adantr |
⊢ ( ( 𝑥 ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) 𝑧 ∧ 𝑥 ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) 𝑤 ) → 𝑥 ∈ ( V × V ) ) |
23 |
14 22
|
sylbi |
⊢ ( 𝑥 ( ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) ⊗ ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) ) 〈 𝑧 , 𝑤 〉 → 𝑥 ∈ ( V × V ) ) |
24 |
10 23
|
sylbir |
⊢ ( 〈 𝑥 , 〈 𝑧 , 𝑤 〉 〉 ∈ ( ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) ⊗ ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) ) → 𝑥 ∈ ( V × V ) ) |
25 |
9 24
|
syl6bi |
⊢ ( 𝑦 = 〈 𝑧 , 𝑤 〉 → ( 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) ⊗ ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) ) → 𝑥 ∈ ( V × V ) ) ) |
26 |
25
|
exlimivv |
⊢ ( ∃ 𝑧 ∃ 𝑤 𝑦 = 〈 𝑧 , 𝑤 〉 → ( 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) ⊗ ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) ) → 𝑥 ∈ ( V × V ) ) ) |
27 |
7 26
|
sylbi |
⊢ ( 𝑦 ∈ ( V × V ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) ⊗ ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) ) → 𝑥 ∈ ( V × V ) ) ) |
28 |
6 27
|
mpcom |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) ⊗ ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) ) → 𝑥 ∈ ( V × V ) ) |
29 |
28 6
|
opelxpd |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) ⊗ ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) ) → 〈 𝑥 , 𝑦 〉 ∈ ( ( V × V ) × ( V × V ) ) ) |
30 |
2 29
|
relssi |
⊢ ( ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) ⊗ ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) ) ⊆ ( ( V × V ) × ( V × V ) ) |
31 |
1 30
|
eqsstri |
⊢ pprod ( 𝐴 , 𝐵 ) ⊆ ( ( V × V ) × ( V × V ) ) |