| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
⊢ ( 𝑊 = ( 𝑈 prefix ( ♯ ‘ 𝑊 ) ) → ( 𝑊 ++ 〈“ ( lastS ‘ 𝑈 ) ”〉 ) = ( ( 𝑈 prefix ( ♯ ‘ 𝑊 ) ) ++ 〈“ ( lastS ‘ 𝑈 ) ”〉 ) ) |
| 2 |
1
|
adantl |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) ∧ 𝑊 = ( 𝑈 prefix ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ++ 〈“ ( lastS ‘ 𝑈 ) ”〉 ) = ( ( 𝑈 prefix ( ♯ ‘ 𝑊 ) ) ++ 〈“ ( lastS ‘ 𝑈 ) ”〉 ) ) |
| 3 |
|
lencl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
| 4 |
3
|
nn0cnd |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℂ ) |
| 5 |
|
pncan1 |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℂ → ( ( ( ♯ ‘ 𝑊 ) + 1 ) − 1 ) = ( ♯ ‘ 𝑊 ) ) |
| 6 |
4 5
|
syl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ( ( ♯ ‘ 𝑊 ) + 1 ) − 1 ) = ( ♯ ‘ 𝑊 ) ) |
| 7 |
6
|
eqcomd |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) = ( ( ( ♯ ‘ 𝑊 ) + 1 ) − 1 ) ) |
| 8 |
7
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) → ( ♯ ‘ 𝑊 ) = ( ( ( ♯ ‘ 𝑊 ) + 1 ) − 1 ) ) |
| 9 |
|
oveq1 |
⊢ ( ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) → ( ( ♯ ‘ 𝑈 ) − 1 ) = ( ( ( ♯ ‘ 𝑊 ) + 1 ) − 1 ) ) |
| 10 |
9
|
eqcomd |
⊢ ( ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) → ( ( ( ♯ ‘ 𝑊 ) + 1 ) − 1 ) = ( ( ♯ ‘ 𝑈 ) − 1 ) ) |
| 11 |
10
|
3ad2ant3 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) → ( ( ( ♯ ‘ 𝑊 ) + 1 ) − 1 ) = ( ( ♯ ‘ 𝑈 ) − 1 ) ) |
| 12 |
8 11
|
eqtrd |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) → ( ♯ ‘ 𝑊 ) = ( ( ♯ ‘ 𝑈 ) − 1 ) ) |
| 13 |
12
|
oveq2d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) → ( 𝑈 prefix ( ♯ ‘ 𝑊 ) ) = ( 𝑈 prefix ( ( ♯ ‘ 𝑈 ) − 1 ) ) ) |
| 14 |
13
|
oveq1d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) → ( ( 𝑈 prefix ( ♯ ‘ 𝑊 ) ) ++ 〈“ ( lastS ‘ 𝑈 ) ”〉 ) = ( ( 𝑈 prefix ( ( ♯ ‘ 𝑈 ) − 1 ) ) ++ 〈“ ( lastS ‘ 𝑈 ) ”〉 ) ) |
| 15 |
|
simp2 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) → 𝑈 ∈ Word 𝑉 ) |
| 16 |
|
nn0p1gt0 |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → 0 < ( ( ♯ ‘ 𝑊 ) + 1 ) ) |
| 17 |
3 16
|
syl |
⊢ ( 𝑊 ∈ Word 𝑉 → 0 < ( ( ♯ ‘ 𝑊 ) + 1 ) ) |
| 18 |
17
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) → 0 < ( ( ♯ ‘ 𝑊 ) + 1 ) ) |
| 19 |
|
breq2 |
⊢ ( ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) → ( 0 < ( ♯ ‘ 𝑈 ) ↔ 0 < ( ( ♯ ‘ 𝑊 ) + 1 ) ) ) |
| 20 |
19
|
3ad2ant3 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) → ( 0 < ( ♯ ‘ 𝑈 ) ↔ 0 < ( ( ♯ ‘ 𝑊 ) + 1 ) ) ) |
| 21 |
18 20
|
mpbird |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) → 0 < ( ♯ ‘ 𝑈 ) ) |
| 22 |
|
hashneq0 |
⊢ ( 𝑈 ∈ Word 𝑉 → ( 0 < ( ♯ ‘ 𝑈 ) ↔ 𝑈 ≠ ∅ ) ) |
| 23 |
22
|
3ad2ant2 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) → ( 0 < ( ♯ ‘ 𝑈 ) ↔ 𝑈 ≠ ∅ ) ) |
| 24 |
21 23
|
mpbid |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) → 𝑈 ≠ ∅ ) |
| 25 |
|
pfxlswccat |
⊢ ( ( 𝑈 ∈ Word 𝑉 ∧ 𝑈 ≠ ∅ ) → ( ( 𝑈 prefix ( ( ♯ ‘ 𝑈 ) − 1 ) ) ++ 〈“ ( lastS ‘ 𝑈 ) ”〉 ) = 𝑈 ) |
| 26 |
15 24 25
|
syl2anc |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) → ( ( 𝑈 prefix ( ( ♯ ‘ 𝑈 ) − 1 ) ) ++ 〈“ ( lastS ‘ 𝑈 ) ”〉 ) = 𝑈 ) |
| 27 |
14 26
|
eqtrd |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) → ( ( 𝑈 prefix ( ♯ ‘ 𝑊 ) ) ++ 〈“ ( lastS ‘ 𝑈 ) ”〉 ) = 𝑈 ) |
| 28 |
27
|
adantr |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) ∧ 𝑊 = ( 𝑈 prefix ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑈 prefix ( ♯ ‘ 𝑊 ) ) ++ 〈“ ( lastS ‘ 𝑈 ) ”〉 ) = 𝑈 ) |
| 29 |
2 28
|
eqtr2d |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) ∧ 𝑊 = ( 𝑈 prefix ( ♯ ‘ 𝑊 ) ) ) → 𝑈 = ( 𝑊 ++ 〈“ ( lastS ‘ 𝑈 ) ”〉 ) ) |
| 30 |
29
|
ex |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) → ( 𝑊 = ( 𝑈 prefix ( ♯ ‘ 𝑊 ) ) → 𝑈 = ( 𝑊 ++ 〈“ ( lastS ‘ 𝑈 ) ”〉 ) ) ) |