| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme26.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
cdleme26.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
cdleme26.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 4 |
|
cdleme26.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 5 |
|
cdleme26.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 6 |
|
cdleme26.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 7 |
|
cdleme26e.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
| 8 |
|
cdleme26e.f |
⊢ 𝐹 = ( ( 𝑧 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
| 9 |
|
cdleme26e.n |
⊢ 𝑁 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐹 ∨ ( ( 𝑆 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
| 10 |
|
cdleme26e.o |
⊢ 𝑂 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐹 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
| 11 |
|
cdleme26e.i |
⊢ 𝐼 = ( ℩ 𝑢 ∈ 𝐵 ∀ 𝑧 ∈ 𝐴 ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = 𝑁 ) ) |
| 12 |
|
cdleme26e.e |
⊢ 𝐸 = ( ℩ 𝑢 ∈ 𝐵 ∀ 𝑧 ∈ 𝐴 ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = 𝑂 ) ) |
| 13 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ) → 𝐾 ∈ HL ) |
| 14 |
|
simp11r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ) → 𝑊 ∈ 𝐻 ) |
| 15 |
|
simp12 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
| 16 |
|
simp13 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
| 17 |
|
simp3l1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ) → 𝑃 ≠ 𝑄 ) |
| 18 |
2 3 5 6
|
cdlemb2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) → ∃ 𝑧 ∈ 𝐴 ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
| 19 |
13 14 15 16 17 18
|
syl221anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ) → ∃ 𝑧 ∈ 𝐴 ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
| 20 |
|
nfv |
⊢ Ⅎ 𝑧 ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ) |
| 21 |
|
nfra1 |
⊢ Ⅎ 𝑧 ∀ 𝑧 ∈ 𝐴 ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = 𝑁 ) |
| 22 |
|
nfcv |
⊢ Ⅎ 𝑧 𝐵 |
| 23 |
21 22
|
nfriota |
⊢ Ⅎ 𝑧 ( ℩ 𝑢 ∈ 𝐵 ∀ 𝑧 ∈ 𝐴 ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = 𝑁 ) ) |
| 24 |
11 23
|
nfcxfr |
⊢ Ⅎ 𝑧 𝐼 |
| 25 |
|
nfcv |
⊢ Ⅎ 𝑧 ≤ |
| 26 |
|
nfra1 |
⊢ Ⅎ 𝑧 ∀ 𝑧 ∈ 𝐴 ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = 𝑂 ) |
| 27 |
26 22
|
nfriota |
⊢ Ⅎ 𝑧 ( ℩ 𝑢 ∈ 𝐵 ∀ 𝑧 ∈ 𝐴 ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = 𝑂 ) ) |
| 28 |
12 27
|
nfcxfr |
⊢ Ⅎ 𝑧 𝐸 |
| 29 |
|
nfcv |
⊢ Ⅎ 𝑧 ∨ |
| 30 |
|
nfcv |
⊢ Ⅎ 𝑧 𝑉 |
| 31 |
28 29 30
|
nfov |
⊢ Ⅎ 𝑧 ( 𝐸 ∨ 𝑉 ) |
| 32 |
24 25 31
|
nfbr |
⊢ Ⅎ 𝑧 𝐼 ≤ ( 𝐸 ∨ 𝑉 ) |
| 33 |
|
simp111 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑧 ∈ 𝐴 ∧ ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 34 |
|
simp112 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑧 ∈ 𝐴 ∧ ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
| 35 |
|
simp113 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑧 ∈ 𝐴 ∧ ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
| 36 |
|
simp121 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑧 ∈ 𝐴 ∧ ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) |
| 37 |
|
simp122 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑧 ∈ 𝐴 ∧ ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) |
| 38 |
|
simp123 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑧 ∈ 𝐴 ∧ ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) |
| 39 |
|
simp13l |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑧 ∈ 𝐴 ∧ ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
| 40 |
|
simp13r |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑧 ∈ 𝐴 ∧ ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) |
| 41 |
|
simp3r |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑧 ∈ 𝐴 ∧ ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) |
| 42 |
40 41
|
jca |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑧 ∈ 𝐴 ∧ ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
| 43 |
|
simp2 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑧 ∈ 𝐴 ∧ ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑧 ∈ 𝐴 ) |
| 44 |
|
simp3l |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑧 ∈ 𝐴 ∧ ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ¬ 𝑧 ≤ 𝑊 ) |
| 45 |
43 44
|
jca |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑧 ∈ 𝐴 ∧ ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) |
| 46 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cdleme26e |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → 𝐼 ≤ ( 𝐸 ∨ 𝑉 ) ) |
| 47 |
33 34 35 36 37 38 39 42 45 46
|
syl333anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑧 ∈ 𝐴 ∧ ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐼 ≤ ( 𝐸 ∨ 𝑉 ) ) |
| 48 |
47
|
3exp |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑧 ∈ 𝐴 → ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝐼 ≤ ( 𝐸 ∨ 𝑉 ) ) ) ) |
| 49 |
20 32 48
|
rexlimd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ) → ( ∃ 𝑧 ∈ 𝐴 ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝐼 ≤ ( 𝐸 ∨ 𝑉 ) ) ) |
| 50 |
19 49
|
mpd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ) → 𝐼 ≤ ( 𝐸 ∨ 𝑉 ) ) |