Description: Obsolete version of ceqsex as of 22-Jan-2025. (Contributed by NM, 2-Mar-1995) (Revised by Mario Carneiro, 10-Oct-2016) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ceqsex.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| ceqsex.2 | ⊢ 𝐴 ∈ V | ||
| ceqsex.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | ceqsexOLD | ⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqsex.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| 2 | ceqsex.2 | ⊢ 𝐴 ∈ V | |
| 3 | ceqsex.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | 3 | biimpa | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝜑 ) → 𝜓 ) |
| 5 | 1 4 | exlimi | ⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) → 𝜓 ) |
| 6 | 3 | biimprcd | ⊢ ( 𝜓 → ( 𝑥 = 𝐴 → 𝜑 ) ) |
| 7 | 1 6 | alrimi | ⊢ ( 𝜓 → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) |
| 8 | 2 | isseti | ⊢ ∃ 𝑥 𝑥 = 𝐴 |
| 9 | exintr | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) → ( ∃ 𝑥 𝑥 = 𝐴 → ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) | |
| 10 | 7 8 9 | mpisyl | ⊢ ( 𝜓 → ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) |
| 11 | 5 10 | impbii | ⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ 𝜓 ) |