Metamath Proof Explorer


Theorem chirred

Description: The Hilbert lattice is irreducible: any element that commutes with all elements must be zero or one. Theorem 14.8.4 of BeltramettiCassinelli p. 166. (Contributed by NM, 16-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion chirred ( ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 ) → ( 𝐴 = 0𝐴 = ℋ ) )

Proof

Step Hyp Ref Expression
1 eqeq1 ( 𝐴 = if ( ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 ) , 𝐴 , 0 ) → ( 𝐴 = 0 ↔ if ( ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 ) , 𝐴 , 0 ) = 0 ) )
2 eqeq1 ( 𝐴 = if ( ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 ) , 𝐴 , 0 ) → ( 𝐴 = ℋ ↔ if ( ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 ) , 𝐴 , 0 ) = ℋ ) )
3 1 2 orbi12d ( 𝐴 = if ( ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 ) , 𝐴 , 0 ) → ( ( 𝐴 = 0𝐴 = ℋ ) ↔ ( if ( ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 ) , 𝐴 , 0 ) = 0 ∨ if ( ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 ) , 𝐴 , 0 ) = ℋ ) ) )
4 eleq1 ( 𝐴 = if ( ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 ) , 𝐴 , 0 ) → ( 𝐴C ↔ if ( ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 ) , 𝐴 , 0 ) ∈ C ) )
5 nfv 𝑥 𝐴C
6 nfra1 𝑥𝑥C 𝐴 𝐶 𝑥
7 5 6 nfan 𝑥 ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 )
8 nfcv 𝑥 𝐴
9 nfcv 𝑥 0
10 7 8 9 nfif 𝑥 if ( ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 ) , 𝐴 , 0 )
11 10 nfeq2 𝑥 𝐴 = if ( ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 ) , 𝐴 , 0 )
12 breq1 ( 𝐴 = if ( ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 ) , 𝐴 , 0 ) → ( 𝐴 𝐶 𝑥 ↔ if ( ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 ) , 𝐴 , 0 ) 𝐶 𝑥 ) )
13 11 12 ralbid ( 𝐴 = if ( ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 ) , 𝐴 , 0 ) → ( ∀ 𝑥C 𝐴 𝐶 𝑥 ↔ ∀ 𝑥C if ( ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 ) , 𝐴 , 0 ) 𝐶 𝑥 ) )
14 4 13 anbi12d ( 𝐴 = if ( ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 ) , 𝐴 , 0 ) → ( ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 ) ↔ ( if ( ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 ) , 𝐴 , 0 ) ∈ C ∧ ∀ 𝑥C if ( ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 ) , 𝐴 , 0 ) 𝐶 𝑥 ) ) )
15 eleq1 ( 0 = if ( ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 ) , 𝐴 , 0 ) → ( 0C ↔ if ( ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 ) , 𝐴 , 0 ) ∈ C ) )
16 10 nfeq2 𝑥 0 = if ( ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 ) , 𝐴 , 0 )
17 breq1 ( 0 = if ( ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 ) , 𝐴 , 0 ) → ( 0 𝐶 𝑥 ↔ if ( ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 ) , 𝐴 , 0 ) 𝐶 𝑥 ) )
18 16 17 ralbid ( 0 = if ( ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 ) , 𝐴 , 0 ) → ( ∀ 𝑥C 0 𝐶 𝑥 ↔ ∀ 𝑥C if ( ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 ) , 𝐴 , 0 ) 𝐶 𝑥 ) )
19 15 18 anbi12d ( 0 = if ( ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 ) , 𝐴 , 0 ) → ( ( 0C ∧ ∀ 𝑥C 0 𝐶 𝑥 ) ↔ ( if ( ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 ) , 𝐴 , 0 ) ∈ C ∧ ∀ 𝑥C if ( ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 ) , 𝐴 , 0 ) 𝐶 𝑥 ) ) )
20 h0elch 0C
21 cm0 ( 𝑥C → 0 𝐶 𝑥 )
22 21 rgen 𝑥C 0 𝐶 𝑥
23 20 22 pm3.2i ( 0C ∧ ∀ 𝑥C 0 𝐶 𝑥 )
24 14 19 23 elimhyp ( if ( ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 ) , 𝐴 , 0 ) ∈ C ∧ ∀ 𝑥C if ( ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 ) , 𝐴 , 0 ) 𝐶 𝑥 )
25 24 simpli if ( ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 ) , 𝐴 , 0 ) ∈ C
26 24 simpri 𝑥C if ( ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 ) , 𝐴 , 0 ) 𝐶 𝑥
27 nfcv 𝑥 𝐶
28 nfcv 𝑥 𝑦
29 10 27 28 nfbr 𝑥 if ( ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 ) , 𝐴 , 0 ) 𝐶 𝑦
30 breq2 ( 𝑥 = 𝑦 → ( if ( ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 ) , 𝐴 , 0 ) 𝐶 𝑥 ↔ if ( ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 ) , 𝐴 , 0 ) 𝐶 𝑦 ) )
31 29 30 rspc ( 𝑦C → ( ∀ 𝑥C if ( ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 ) , 𝐴 , 0 ) 𝐶 𝑥 → if ( ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 ) , 𝐴 , 0 ) 𝐶 𝑦 ) )
32 26 31 mpi ( 𝑦C → if ( ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 ) , 𝐴 , 0 ) 𝐶 𝑦 )
33 25 32 chirredi ( if ( ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 ) , 𝐴 , 0 ) = 0 ∨ if ( ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 ) , 𝐴 , 0 ) = ℋ )
34 3 33 dedth ( ( 𝐴C ∧ ∀ 𝑥C 𝐴 𝐶 𝑥 ) → ( 𝐴 = 0𝐴 = ℋ ) )