| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chirred.1 |
⊢ 𝐴 ∈ Cℋ |
| 2 |
|
chirred.2 |
⊢ ( 𝑥 ∈ Cℋ → 𝐴 𝐶ℋ 𝑥 ) |
| 3 |
|
eqid |
⊢ 0ℋ = 0ℋ |
| 4 |
|
ioran |
⊢ ( ¬ ( 𝐴 = 0ℋ ∨ ( ⊥ ‘ 𝐴 ) = 0ℋ ) ↔ ( ¬ 𝐴 = 0ℋ ∧ ¬ ( ⊥ ‘ 𝐴 ) = 0ℋ ) ) |
| 5 |
|
df-ne |
⊢ ( 𝐴 ≠ 0ℋ ↔ ¬ 𝐴 = 0ℋ ) |
| 6 |
|
df-ne |
⊢ ( ( ⊥ ‘ 𝐴 ) ≠ 0ℋ ↔ ¬ ( ⊥ ‘ 𝐴 ) = 0ℋ ) |
| 7 |
5 6
|
anbi12i |
⊢ ( ( 𝐴 ≠ 0ℋ ∧ ( ⊥ ‘ 𝐴 ) ≠ 0ℋ ) ↔ ( ¬ 𝐴 = 0ℋ ∧ ¬ ( ⊥ ‘ 𝐴 ) = 0ℋ ) ) |
| 8 |
4 7
|
bitr4i |
⊢ ( ¬ ( 𝐴 = 0ℋ ∨ ( ⊥ ‘ 𝐴 ) = 0ℋ ) ↔ ( 𝐴 ≠ 0ℋ ∧ ( ⊥ ‘ 𝐴 ) ≠ 0ℋ ) ) |
| 9 |
1
|
hatomici |
⊢ ( 𝐴 ≠ 0ℋ → ∃ 𝑝 ∈ HAtoms 𝑝 ⊆ 𝐴 ) |
| 10 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
| 11 |
10
|
hatomici |
⊢ ( ( ⊥ ‘ 𝐴 ) ≠ 0ℋ → ∃ 𝑞 ∈ HAtoms 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) |
| 12 |
9 11
|
anim12i |
⊢ ( ( 𝐴 ≠ 0ℋ ∧ ( ⊥ ‘ 𝐴 ) ≠ 0ℋ ) → ( ∃ 𝑝 ∈ HAtoms 𝑝 ⊆ 𝐴 ∧ ∃ 𝑞 ∈ HAtoms 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) |
| 13 |
|
reeanv |
⊢ ( ∃ 𝑝 ∈ HAtoms ∃ 𝑞 ∈ HAtoms ( 𝑝 ⊆ 𝐴 ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ↔ ( ∃ 𝑝 ∈ HAtoms 𝑝 ⊆ 𝐴 ∧ ∃ 𝑞 ∈ HAtoms 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) |
| 14 |
12 13
|
sylibr |
⊢ ( ( 𝐴 ≠ 0ℋ ∧ ( ⊥ ‘ 𝐴 ) ≠ 0ℋ ) → ∃ 𝑝 ∈ HAtoms ∃ 𝑞 ∈ HAtoms ( 𝑝 ⊆ 𝐴 ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) |
| 15 |
|
simpll |
⊢ ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) → 𝑝 ∈ HAtoms ) |
| 16 |
|
simprl |
⊢ ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) → 𝑞 ∈ HAtoms ) |
| 17 |
|
atelch |
⊢ ( 𝑝 ∈ HAtoms → 𝑝 ∈ Cℋ ) |
| 18 |
|
chsscon3 |
⊢ ( ( 𝑝 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → ( 𝑝 ⊆ 𝐴 ↔ ( ⊥ ‘ 𝐴 ) ⊆ ( ⊥ ‘ 𝑝 ) ) ) |
| 19 |
17 1 18
|
sylancl |
⊢ ( 𝑝 ∈ HAtoms → ( 𝑝 ⊆ 𝐴 ↔ ( ⊥ ‘ 𝐴 ) ⊆ ( ⊥ ‘ 𝑝 ) ) ) |
| 20 |
19
|
biimpa |
⊢ ( ( 𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴 ) → ( ⊥ ‘ 𝐴 ) ⊆ ( ⊥ ‘ 𝑝 ) ) |
| 21 |
|
sstr |
⊢ ( ( 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ∧ ( ⊥ ‘ 𝐴 ) ⊆ ( ⊥ ‘ 𝑝 ) ) → 𝑞 ⊆ ( ⊥ ‘ 𝑝 ) ) |
| 22 |
20 21
|
sylan2 |
⊢ ( ( 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ∧ ( 𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴 ) ) → 𝑞 ⊆ ( ⊥ ‘ 𝑝 ) ) |
| 23 |
22
|
ancoms |
⊢ ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴 ) ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) → 𝑞 ⊆ ( ⊥ ‘ 𝑝 ) ) |
| 24 |
|
atne0 |
⊢ ( 𝑝 ∈ HAtoms → 𝑝 ≠ 0ℋ ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝑝 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝑝 ) ) → 𝑝 ≠ 0ℋ ) |
| 26 |
|
sseq1 |
⊢ ( 𝑝 = 𝑞 → ( 𝑝 ⊆ ( ⊥ ‘ 𝑝 ) ↔ 𝑞 ⊆ ( ⊥ ‘ 𝑝 ) ) ) |
| 27 |
26
|
bicomd |
⊢ ( 𝑝 = 𝑞 → ( 𝑞 ⊆ ( ⊥ ‘ 𝑝 ) ↔ 𝑝 ⊆ ( ⊥ ‘ 𝑝 ) ) ) |
| 28 |
|
chssoc |
⊢ ( 𝑝 ∈ Cℋ → ( 𝑝 ⊆ ( ⊥ ‘ 𝑝 ) ↔ 𝑝 = 0ℋ ) ) |
| 29 |
17 28
|
syl |
⊢ ( 𝑝 ∈ HAtoms → ( 𝑝 ⊆ ( ⊥ ‘ 𝑝 ) ↔ 𝑝 = 0ℋ ) ) |
| 30 |
27 29
|
sylan9bbr |
⊢ ( ( 𝑝 ∈ HAtoms ∧ 𝑝 = 𝑞 ) → ( 𝑞 ⊆ ( ⊥ ‘ 𝑝 ) ↔ 𝑝 = 0ℋ ) ) |
| 31 |
30
|
biimpa |
⊢ ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝 = 𝑞 ) ∧ 𝑞 ⊆ ( ⊥ ‘ 𝑝 ) ) → 𝑝 = 0ℋ ) |
| 32 |
31
|
an32s |
⊢ ( ( ( 𝑝 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝑝 ) ) ∧ 𝑝 = 𝑞 ) → 𝑝 = 0ℋ ) |
| 33 |
32
|
ex |
⊢ ( ( 𝑝 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝑝 ) ) → ( 𝑝 = 𝑞 → 𝑝 = 0ℋ ) ) |
| 34 |
33
|
necon3d |
⊢ ( ( 𝑝 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝑝 ) ) → ( 𝑝 ≠ 0ℋ → 𝑝 ≠ 𝑞 ) ) |
| 35 |
25 34
|
mpd |
⊢ ( ( 𝑝 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝑝 ) ) → 𝑝 ≠ 𝑞 ) |
| 36 |
35
|
adantlr |
⊢ ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴 ) ∧ 𝑞 ⊆ ( ⊥ ‘ 𝑝 ) ) → 𝑝 ≠ 𝑞 ) |
| 37 |
23 36
|
syldan |
⊢ ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴 ) ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) → 𝑝 ≠ 𝑞 ) |
| 38 |
37
|
adantrl |
⊢ ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) → 𝑝 ≠ 𝑞 ) |
| 39 |
|
superpos |
⊢ ( ( 𝑝 ∈ HAtoms ∧ 𝑞 ∈ HAtoms ∧ 𝑝 ≠ 𝑞 ) → ∃ 𝑟 ∈ HAtoms ( 𝑟 ≠ 𝑝 ∧ 𝑟 ≠ 𝑞 ∧ 𝑟 ⊆ ( 𝑝 ∨ℋ 𝑞 ) ) ) |
| 40 |
15 16 38 39
|
syl3anc |
⊢ ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) → ∃ 𝑟 ∈ HAtoms ( 𝑟 ≠ 𝑝 ∧ 𝑟 ≠ 𝑞 ∧ 𝑟 ⊆ ( 𝑝 ∨ℋ 𝑞 ) ) ) |
| 41 |
|
df-3an |
⊢ ( ( 𝑟 ≠ 𝑝 ∧ 𝑟 ≠ 𝑞 ∧ 𝑟 ⊆ ( 𝑝 ∨ℋ 𝑞 ) ) ↔ ( ( 𝑟 ≠ 𝑝 ∧ 𝑟 ≠ 𝑞 ) ∧ 𝑟 ⊆ ( 𝑝 ∨ℋ 𝑞 ) ) ) |
| 42 |
|
neanior |
⊢ ( ( 𝑟 ≠ 𝑝 ∧ 𝑟 ≠ 𝑞 ) ↔ ¬ ( 𝑟 = 𝑝 ∨ 𝑟 = 𝑞 ) ) |
| 43 |
42
|
anbi1i |
⊢ ( ( ( 𝑟 ≠ 𝑝 ∧ 𝑟 ≠ 𝑞 ) ∧ 𝑟 ⊆ ( 𝑝 ∨ℋ 𝑞 ) ) ↔ ( ¬ ( 𝑟 = 𝑝 ∨ 𝑟 = 𝑞 ) ∧ 𝑟 ⊆ ( 𝑝 ∨ℋ 𝑞 ) ) ) |
| 44 |
41 43
|
bitri |
⊢ ( ( 𝑟 ≠ 𝑝 ∧ 𝑟 ≠ 𝑞 ∧ 𝑟 ⊆ ( 𝑝 ∨ℋ 𝑞 ) ) ↔ ( ¬ ( 𝑟 = 𝑝 ∨ 𝑟 = 𝑞 ) ∧ 𝑟 ⊆ ( 𝑝 ∨ℋ 𝑞 ) ) ) |
| 45 |
1 2
|
chirredlem4 |
⊢ ( ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) ∧ ( 𝑟 ∈ HAtoms ∧ 𝑟 ⊆ ( 𝑝 ∨ℋ 𝑞 ) ) ) → ( 𝑟 = 𝑝 ∨ 𝑟 = 𝑞 ) ) |
| 46 |
45
|
anassrs |
⊢ ( ( ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) ∧ 𝑟 ∈ HAtoms ) ∧ 𝑟 ⊆ ( 𝑝 ∨ℋ 𝑞 ) ) → ( 𝑟 = 𝑝 ∨ 𝑟 = 𝑞 ) ) |
| 47 |
46
|
pm2.24d |
⊢ ( ( ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) ∧ 𝑟 ∈ HAtoms ) ∧ 𝑟 ⊆ ( 𝑝 ∨ℋ 𝑞 ) ) → ( ¬ ( 𝑟 = 𝑝 ∨ 𝑟 = 𝑞 ) → ¬ 0ℋ = 0ℋ ) ) |
| 48 |
47
|
ex |
⊢ ( ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) ∧ 𝑟 ∈ HAtoms ) → ( 𝑟 ⊆ ( 𝑝 ∨ℋ 𝑞 ) → ( ¬ ( 𝑟 = 𝑝 ∨ 𝑟 = 𝑞 ) → ¬ 0ℋ = 0ℋ ) ) ) |
| 49 |
48
|
com23 |
⊢ ( ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) ∧ 𝑟 ∈ HAtoms ) → ( ¬ ( 𝑟 = 𝑝 ∨ 𝑟 = 𝑞 ) → ( 𝑟 ⊆ ( 𝑝 ∨ℋ 𝑞 ) → ¬ 0ℋ = 0ℋ ) ) ) |
| 50 |
49
|
impd |
⊢ ( ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) ∧ 𝑟 ∈ HAtoms ) → ( ( ¬ ( 𝑟 = 𝑝 ∨ 𝑟 = 𝑞 ) ∧ 𝑟 ⊆ ( 𝑝 ∨ℋ 𝑞 ) ) → ¬ 0ℋ = 0ℋ ) ) |
| 51 |
44 50
|
biimtrid |
⊢ ( ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) ∧ 𝑟 ∈ HAtoms ) → ( ( 𝑟 ≠ 𝑝 ∧ 𝑟 ≠ 𝑞 ∧ 𝑟 ⊆ ( 𝑝 ∨ℋ 𝑞 ) ) → ¬ 0ℋ = 0ℋ ) ) |
| 52 |
51
|
rexlimdva |
⊢ ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) → ( ∃ 𝑟 ∈ HAtoms ( 𝑟 ≠ 𝑝 ∧ 𝑟 ≠ 𝑞 ∧ 𝑟 ⊆ ( 𝑝 ∨ℋ 𝑞 ) ) → ¬ 0ℋ = 0ℋ ) ) |
| 53 |
40 52
|
mpd |
⊢ ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) → ¬ 0ℋ = 0ℋ ) |
| 54 |
53
|
an4s |
⊢ ( ( ( 𝑝 ∈ HAtoms ∧ 𝑞 ∈ HAtoms ) ∧ ( 𝑝 ⊆ 𝐴 ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) → ¬ 0ℋ = 0ℋ ) |
| 55 |
54
|
ex |
⊢ ( ( 𝑝 ∈ HAtoms ∧ 𝑞 ∈ HAtoms ) → ( ( 𝑝 ⊆ 𝐴 ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) → ¬ 0ℋ = 0ℋ ) ) |
| 56 |
55
|
rexlimivv |
⊢ ( ∃ 𝑝 ∈ HAtoms ∃ 𝑞 ∈ HAtoms ( 𝑝 ⊆ 𝐴 ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) → ¬ 0ℋ = 0ℋ ) |
| 57 |
14 56
|
syl |
⊢ ( ( 𝐴 ≠ 0ℋ ∧ ( ⊥ ‘ 𝐴 ) ≠ 0ℋ ) → ¬ 0ℋ = 0ℋ ) |
| 58 |
8 57
|
sylbi |
⊢ ( ¬ ( 𝐴 = 0ℋ ∨ ( ⊥ ‘ 𝐴 ) = 0ℋ ) → ¬ 0ℋ = 0ℋ ) |
| 59 |
3 58
|
mt4 |
⊢ ( 𝐴 = 0ℋ ∨ ( ⊥ ‘ 𝐴 ) = 0ℋ ) |
| 60 |
|
fveq2 |
⊢ ( ( ⊥ ‘ 𝐴 ) = 0ℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = ( ⊥ ‘ 0ℋ ) ) |
| 61 |
1
|
ococi |
⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = 𝐴 |
| 62 |
|
choc0 |
⊢ ( ⊥ ‘ 0ℋ ) = ℋ |
| 63 |
60 61 62
|
3eqtr3g |
⊢ ( ( ⊥ ‘ 𝐴 ) = 0ℋ → 𝐴 = ℋ ) |
| 64 |
63
|
orim2i |
⊢ ( ( 𝐴 = 0ℋ ∨ ( ⊥ ‘ 𝐴 ) = 0ℋ ) → ( 𝐴 = 0ℋ ∨ 𝐴 = ℋ ) ) |
| 65 |
59 64
|
ax-mp |
⊢ ( 𝐴 = 0ℋ ∨ 𝐴 = ℋ ) |