Step |
Hyp |
Ref |
Expression |
1 |
|
chirred.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
chirred.2 |
⊢ ( 𝑥 ∈ Cℋ → 𝐴 𝐶ℋ 𝑥 ) |
3 |
|
eqid |
⊢ 0ℋ = 0ℋ |
4 |
|
ioran |
⊢ ( ¬ ( 𝐴 = 0ℋ ∨ ( ⊥ ‘ 𝐴 ) = 0ℋ ) ↔ ( ¬ 𝐴 = 0ℋ ∧ ¬ ( ⊥ ‘ 𝐴 ) = 0ℋ ) ) |
5 |
|
df-ne |
⊢ ( 𝐴 ≠ 0ℋ ↔ ¬ 𝐴 = 0ℋ ) |
6 |
|
df-ne |
⊢ ( ( ⊥ ‘ 𝐴 ) ≠ 0ℋ ↔ ¬ ( ⊥ ‘ 𝐴 ) = 0ℋ ) |
7 |
5 6
|
anbi12i |
⊢ ( ( 𝐴 ≠ 0ℋ ∧ ( ⊥ ‘ 𝐴 ) ≠ 0ℋ ) ↔ ( ¬ 𝐴 = 0ℋ ∧ ¬ ( ⊥ ‘ 𝐴 ) = 0ℋ ) ) |
8 |
4 7
|
bitr4i |
⊢ ( ¬ ( 𝐴 = 0ℋ ∨ ( ⊥ ‘ 𝐴 ) = 0ℋ ) ↔ ( 𝐴 ≠ 0ℋ ∧ ( ⊥ ‘ 𝐴 ) ≠ 0ℋ ) ) |
9 |
1
|
hatomici |
⊢ ( 𝐴 ≠ 0ℋ → ∃ 𝑝 ∈ HAtoms 𝑝 ⊆ 𝐴 ) |
10 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
11 |
10
|
hatomici |
⊢ ( ( ⊥ ‘ 𝐴 ) ≠ 0ℋ → ∃ 𝑞 ∈ HAtoms 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) |
12 |
9 11
|
anim12i |
⊢ ( ( 𝐴 ≠ 0ℋ ∧ ( ⊥ ‘ 𝐴 ) ≠ 0ℋ ) → ( ∃ 𝑝 ∈ HAtoms 𝑝 ⊆ 𝐴 ∧ ∃ 𝑞 ∈ HAtoms 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) |
13 |
|
reeanv |
⊢ ( ∃ 𝑝 ∈ HAtoms ∃ 𝑞 ∈ HAtoms ( 𝑝 ⊆ 𝐴 ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ↔ ( ∃ 𝑝 ∈ HAtoms 𝑝 ⊆ 𝐴 ∧ ∃ 𝑞 ∈ HAtoms 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) |
14 |
12 13
|
sylibr |
⊢ ( ( 𝐴 ≠ 0ℋ ∧ ( ⊥ ‘ 𝐴 ) ≠ 0ℋ ) → ∃ 𝑝 ∈ HAtoms ∃ 𝑞 ∈ HAtoms ( 𝑝 ⊆ 𝐴 ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) |
15 |
|
simpll |
⊢ ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) → 𝑝 ∈ HAtoms ) |
16 |
|
simprl |
⊢ ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) → 𝑞 ∈ HAtoms ) |
17 |
|
atelch |
⊢ ( 𝑝 ∈ HAtoms → 𝑝 ∈ Cℋ ) |
18 |
|
chsscon3 |
⊢ ( ( 𝑝 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → ( 𝑝 ⊆ 𝐴 ↔ ( ⊥ ‘ 𝐴 ) ⊆ ( ⊥ ‘ 𝑝 ) ) ) |
19 |
17 1 18
|
sylancl |
⊢ ( 𝑝 ∈ HAtoms → ( 𝑝 ⊆ 𝐴 ↔ ( ⊥ ‘ 𝐴 ) ⊆ ( ⊥ ‘ 𝑝 ) ) ) |
20 |
19
|
biimpa |
⊢ ( ( 𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴 ) → ( ⊥ ‘ 𝐴 ) ⊆ ( ⊥ ‘ 𝑝 ) ) |
21 |
|
sstr |
⊢ ( ( 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ∧ ( ⊥ ‘ 𝐴 ) ⊆ ( ⊥ ‘ 𝑝 ) ) → 𝑞 ⊆ ( ⊥ ‘ 𝑝 ) ) |
22 |
20 21
|
sylan2 |
⊢ ( ( 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ∧ ( 𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴 ) ) → 𝑞 ⊆ ( ⊥ ‘ 𝑝 ) ) |
23 |
22
|
ancoms |
⊢ ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴 ) ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) → 𝑞 ⊆ ( ⊥ ‘ 𝑝 ) ) |
24 |
|
atne0 |
⊢ ( 𝑝 ∈ HAtoms → 𝑝 ≠ 0ℋ ) |
25 |
24
|
adantr |
⊢ ( ( 𝑝 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝑝 ) ) → 𝑝 ≠ 0ℋ ) |
26 |
|
sseq1 |
⊢ ( 𝑝 = 𝑞 → ( 𝑝 ⊆ ( ⊥ ‘ 𝑝 ) ↔ 𝑞 ⊆ ( ⊥ ‘ 𝑝 ) ) ) |
27 |
26
|
bicomd |
⊢ ( 𝑝 = 𝑞 → ( 𝑞 ⊆ ( ⊥ ‘ 𝑝 ) ↔ 𝑝 ⊆ ( ⊥ ‘ 𝑝 ) ) ) |
28 |
|
chssoc |
⊢ ( 𝑝 ∈ Cℋ → ( 𝑝 ⊆ ( ⊥ ‘ 𝑝 ) ↔ 𝑝 = 0ℋ ) ) |
29 |
17 28
|
syl |
⊢ ( 𝑝 ∈ HAtoms → ( 𝑝 ⊆ ( ⊥ ‘ 𝑝 ) ↔ 𝑝 = 0ℋ ) ) |
30 |
27 29
|
sylan9bbr |
⊢ ( ( 𝑝 ∈ HAtoms ∧ 𝑝 = 𝑞 ) → ( 𝑞 ⊆ ( ⊥ ‘ 𝑝 ) ↔ 𝑝 = 0ℋ ) ) |
31 |
30
|
biimpa |
⊢ ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝 = 𝑞 ) ∧ 𝑞 ⊆ ( ⊥ ‘ 𝑝 ) ) → 𝑝 = 0ℋ ) |
32 |
31
|
an32s |
⊢ ( ( ( 𝑝 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝑝 ) ) ∧ 𝑝 = 𝑞 ) → 𝑝 = 0ℋ ) |
33 |
32
|
ex |
⊢ ( ( 𝑝 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝑝 ) ) → ( 𝑝 = 𝑞 → 𝑝 = 0ℋ ) ) |
34 |
33
|
necon3d |
⊢ ( ( 𝑝 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝑝 ) ) → ( 𝑝 ≠ 0ℋ → 𝑝 ≠ 𝑞 ) ) |
35 |
25 34
|
mpd |
⊢ ( ( 𝑝 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝑝 ) ) → 𝑝 ≠ 𝑞 ) |
36 |
35
|
adantlr |
⊢ ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴 ) ∧ 𝑞 ⊆ ( ⊥ ‘ 𝑝 ) ) → 𝑝 ≠ 𝑞 ) |
37 |
23 36
|
syldan |
⊢ ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴 ) ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) → 𝑝 ≠ 𝑞 ) |
38 |
37
|
adantrl |
⊢ ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) → 𝑝 ≠ 𝑞 ) |
39 |
|
superpos |
⊢ ( ( 𝑝 ∈ HAtoms ∧ 𝑞 ∈ HAtoms ∧ 𝑝 ≠ 𝑞 ) → ∃ 𝑟 ∈ HAtoms ( 𝑟 ≠ 𝑝 ∧ 𝑟 ≠ 𝑞 ∧ 𝑟 ⊆ ( 𝑝 ∨ℋ 𝑞 ) ) ) |
40 |
15 16 38 39
|
syl3anc |
⊢ ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) → ∃ 𝑟 ∈ HAtoms ( 𝑟 ≠ 𝑝 ∧ 𝑟 ≠ 𝑞 ∧ 𝑟 ⊆ ( 𝑝 ∨ℋ 𝑞 ) ) ) |
41 |
|
df-3an |
⊢ ( ( 𝑟 ≠ 𝑝 ∧ 𝑟 ≠ 𝑞 ∧ 𝑟 ⊆ ( 𝑝 ∨ℋ 𝑞 ) ) ↔ ( ( 𝑟 ≠ 𝑝 ∧ 𝑟 ≠ 𝑞 ) ∧ 𝑟 ⊆ ( 𝑝 ∨ℋ 𝑞 ) ) ) |
42 |
|
neanior |
⊢ ( ( 𝑟 ≠ 𝑝 ∧ 𝑟 ≠ 𝑞 ) ↔ ¬ ( 𝑟 = 𝑝 ∨ 𝑟 = 𝑞 ) ) |
43 |
42
|
anbi1i |
⊢ ( ( ( 𝑟 ≠ 𝑝 ∧ 𝑟 ≠ 𝑞 ) ∧ 𝑟 ⊆ ( 𝑝 ∨ℋ 𝑞 ) ) ↔ ( ¬ ( 𝑟 = 𝑝 ∨ 𝑟 = 𝑞 ) ∧ 𝑟 ⊆ ( 𝑝 ∨ℋ 𝑞 ) ) ) |
44 |
41 43
|
bitri |
⊢ ( ( 𝑟 ≠ 𝑝 ∧ 𝑟 ≠ 𝑞 ∧ 𝑟 ⊆ ( 𝑝 ∨ℋ 𝑞 ) ) ↔ ( ¬ ( 𝑟 = 𝑝 ∨ 𝑟 = 𝑞 ) ∧ 𝑟 ⊆ ( 𝑝 ∨ℋ 𝑞 ) ) ) |
45 |
1 2
|
chirredlem4 |
⊢ ( ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) ∧ ( 𝑟 ∈ HAtoms ∧ 𝑟 ⊆ ( 𝑝 ∨ℋ 𝑞 ) ) ) → ( 𝑟 = 𝑝 ∨ 𝑟 = 𝑞 ) ) |
46 |
45
|
anassrs |
⊢ ( ( ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) ∧ 𝑟 ∈ HAtoms ) ∧ 𝑟 ⊆ ( 𝑝 ∨ℋ 𝑞 ) ) → ( 𝑟 = 𝑝 ∨ 𝑟 = 𝑞 ) ) |
47 |
46
|
pm2.24d |
⊢ ( ( ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) ∧ 𝑟 ∈ HAtoms ) ∧ 𝑟 ⊆ ( 𝑝 ∨ℋ 𝑞 ) ) → ( ¬ ( 𝑟 = 𝑝 ∨ 𝑟 = 𝑞 ) → ¬ 0ℋ = 0ℋ ) ) |
48 |
47
|
ex |
⊢ ( ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) ∧ 𝑟 ∈ HAtoms ) → ( 𝑟 ⊆ ( 𝑝 ∨ℋ 𝑞 ) → ( ¬ ( 𝑟 = 𝑝 ∨ 𝑟 = 𝑞 ) → ¬ 0ℋ = 0ℋ ) ) ) |
49 |
48
|
com23 |
⊢ ( ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) ∧ 𝑟 ∈ HAtoms ) → ( ¬ ( 𝑟 = 𝑝 ∨ 𝑟 = 𝑞 ) → ( 𝑟 ⊆ ( 𝑝 ∨ℋ 𝑞 ) → ¬ 0ℋ = 0ℋ ) ) ) |
50 |
49
|
impd |
⊢ ( ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) ∧ 𝑟 ∈ HAtoms ) → ( ( ¬ ( 𝑟 = 𝑝 ∨ 𝑟 = 𝑞 ) ∧ 𝑟 ⊆ ( 𝑝 ∨ℋ 𝑞 ) ) → ¬ 0ℋ = 0ℋ ) ) |
51 |
44 50
|
syl5bi |
⊢ ( ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) ∧ 𝑟 ∈ HAtoms ) → ( ( 𝑟 ≠ 𝑝 ∧ 𝑟 ≠ 𝑞 ∧ 𝑟 ⊆ ( 𝑝 ∨ℋ 𝑞 ) ) → ¬ 0ℋ = 0ℋ ) ) |
52 |
51
|
rexlimdva |
⊢ ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) → ( ∃ 𝑟 ∈ HAtoms ( 𝑟 ≠ 𝑝 ∧ 𝑟 ≠ 𝑞 ∧ 𝑟 ⊆ ( 𝑝 ∨ℋ 𝑞 ) ) → ¬ 0ℋ = 0ℋ ) ) |
53 |
40 52
|
mpd |
⊢ ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) → ¬ 0ℋ = 0ℋ ) |
54 |
53
|
an4s |
⊢ ( ( ( 𝑝 ∈ HAtoms ∧ 𝑞 ∈ HAtoms ) ∧ ( 𝑝 ⊆ 𝐴 ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) → ¬ 0ℋ = 0ℋ ) |
55 |
54
|
ex |
⊢ ( ( 𝑝 ∈ HAtoms ∧ 𝑞 ∈ HAtoms ) → ( ( 𝑝 ⊆ 𝐴 ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) → ¬ 0ℋ = 0ℋ ) ) |
56 |
55
|
rexlimivv |
⊢ ( ∃ 𝑝 ∈ HAtoms ∃ 𝑞 ∈ HAtoms ( 𝑝 ⊆ 𝐴 ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) → ¬ 0ℋ = 0ℋ ) |
57 |
14 56
|
syl |
⊢ ( ( 𝐴 ≠ 0ℋ ∧ ( ⊥ ‘ 𝐴 ) ≠ 0ℋ ) → ¬ 0ℋ = 0ℋ ) |
58 |
8 57
|
sylbi |
⊢ ( ¬ ( 𝐴 = 0ℋ ∨ ( ⊥ ‘ 𝐴 ) = 0ℋ ) → ¬ 0ℋ = 0ℋ ) |
59 |
3 58
|
mt4 |
⊢ ( 𝐴 = 0ℋ ∨ ( ⊥ ‘ 𝐴 ) = 0ℋ ) |
60 |
|
fveq2 |
⊢ ( ( ⊥ ‘ 𝐴 ) = 0ℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = ( ⊥ ‘ 0ℋ ) ) |
61 |
1
|
ococi |
⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = 𝐴 |
62 |
|
choc0 |
⊢ ( ⊥ ‘ 0ℋ ) = ℋ |
63 |
60 61 62
|
3eqtr3g |
⊢ ( ( ⊥ ‘ 𝐴 ) = 0ℋ → 𝐴 = ℋ ) |
64 |
63
|
orim2i |
⊢ ( ( 𝐴 = 0ℋ ∨ ( ⊥ ‘ 𝐴 ) = 0ℋ ) → ( 𝐴 = 0ℋ ∨ 𝐴 = ℋ ) ) |
65 |
59 64
|
ax-mp |
⊢ ( 𝐴 = 0ℋ ∨ 𝐴 = ℋ ) |