Metamath Proof Explorer


Theorem chirredi

Description: The Hilbert lattice is irreducible: any element that commutes with all elements must be zero or one. Theorem 14.8.4 of BeltramettiCassinelli p. 166. (Contributed by NM, 15-Jun-2006) (New usage is discouraged.)

Ref Expression
Hypotheses chirred.1 𝐴C
chirred.2 ( 𝑥C𝐴 𝐶 𝑥 )
Assertion chirredi ( 𝐴 = 0𝐴 = ℋ )

Proof

Step Hyp Ref Expression
1 chirred.1 𝐴C
2 chirred.2 ( 𝑥C𝐴 𝐶 𝑥 )
3 eqid 0 = 0
4 ioran ( ¬ ( 𝐴 = 0 ∨ ( ⊥ ‘ 𝐴 ) = 0 ) ↔ ( ¬ 𝐴 = 0 ∧ ¬ ( ⊥ ‘ 𝐴 ) = 0 ) )
5 df-ne ( 𝐴 ≠ 0 ↔ ¬ 𝐴 = 0 )
6 df-ne ( ( ⊥ ‘ 𝐴 ) ≠ 0 ↔ ¬ ( ⊥ ‘ 𝐴 ) = 0 )
7 5 6 anbi12i ( ( 𝐴 ≠ 0 ∧ ( ⊥ ‘ 𝐴 ) ≠ 0 ) ↔ ( ¬ 𝐴 = 0 ∧ ¬ ( ⊥ ‘ 𝐴 ) = 0 ) )
8 4 7 bitr4i ( ¬ ( 𝐴 = 0 ∨ ( ⊥ ‘ 𝐴 ) = 0 ) ↔ ( 𝐴 ≠ 0 ∧ ( ⊥ ‘ 𝐴 ) ≠ 0 ) )
9 1 hatomici ( 𝐴 ≠ 0 → ∃ 𝑝 ∈ HAtoms 𝑝𝐴 )
10 1 choccli ( ⊥ ‘ 𝐴 ) ∈ C
11 10 hatomici ( ( ⊥ ‘ 𝐴 ) ≠ 0 → ∃ 𝑞 ∈ HAtoms 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) )
12 9 11 anim12i ( ( 𝐴 ≠ 0 ∧ ( ⊥ ‘ 𝐴 ) ≠ 0 ) → ( ∃ 𝑝 ∈ HAtoms 𝑝𝐴 ∧ ∃ 𝑞 ∈ HAtoms 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) )
13 reeanv ( ∃ 𝑝 ∈ HAtoms ∃ 𝑞 ∈ HAtoms ( 𝑝𝐴𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ↔ ( ∃ 𝑝 ∈ HAtoms 𝑝𝐴 ∧ ∃ 𝑞 ∈ HAtoms 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) )
14 12 13 sylibr ( ( 𝐴 ≠ 0 ∧ ( ⊥ ‘ 𝐴 ) ≠ 0 ) → ∃ 𝑝 ∈ HAtoms ∃ 𝑞 ∈ HAtoms ( 𝑝𝐴𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) )
15 simpll ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝𝐴 ) ∧ ( 𝑞 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) → 𝑝 ∈ HAtoms )
16 simprl ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝𝐴 ) ∧ ( 𝑞 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) → 𝑞 ∈ HAtoms )
17 atelch ( 𝑝 ∈ HAtoms → 𝑝C )
18 chsscon3 ( ( 𝑝C𝐴C ) → ( 𝑝𝐴 ↔ ( ⊥ ‘ 𝐴 ) ⊆ ( ⊥ ‘ 𝑝 ) ) )
19 17 1 18 sylancl ( 𝑝 ∈ HAtoms → ( 𝑝𝐴 ↔ ( ⊥ ‘ 𝐴 ) ⊆ ( ⊥ ‘ 𝑝 ) ) )
20 19 biimpa ( ( 𝑝 ∈ HAtoms ∧ 𝑝𝐴 ) → ( ⊥ ‘ 𝐴 ) ⊆ ( ⊥ ‘ 𝑝 ) )
21 sstr ( ( 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ∧ ( ⊥ ‘ 𝐴 ) ⊆ ( ⊥ ‘ 𝑝 ) ) → 𝑞 ⊆ ( ⊥ ‘ 𝑝 ) )
22 20 21 sylan2 ( ( 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ∧ ( 𝑝 ∈ HAtoms ∧ 𝑝𝐴 ) ) → 𝑞 ⊆ ( ⊥ ‘ 𝑝 ) )
23 22 ancoms ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝𝐴 ) ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) → 𝑞 ⊆ ( ⊥ ‘ 𝑝 ) )
24 atne0 ( 𝑝 ∈ HAtoms → 𝑝 ≠ 0 )
25 24 adantr ( ( 𝑝 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝑝 ) ) → 𝑝 ≠ 0 )
26 sseq1 ( 𝑝 = 𝑞 → ( 𝑝 ⊆ ( ⊥ ‘ 𝑝 ) ↔ 𝑞 ⊆ ( ⊥ ‘ 𝑝 ) ) )
27 26 bicomd ( 𝑝 = 𝑞 → ( 𝑞 ⊆ ( ⊥ ‘ 𝑝 ) ↔ 𝑝 ⊆ ( ⊥ ‘ 𝑝 ) ) )
28 chssoc ( 𝑝C → ( 𝑝 ⊆ ( ⊥ ‘ 𝑝 ) ↔ 𝑝 = 0 ) )
29 17 28 syl ( 𝑝 ∈ HAtoms → ( 𝑝 ⊆ ( ⊥ ‘ 𝑝 ) ↔ 𝑝 = 0 ) )
30 27 29 sylan9bbr ( ( 𝑝 ∈ HAtoms ∧ 𝑝 = 𝑞 ) → ( 𝑞 ⊆ ( ⊥ ‘ 𝑝 ) ↔ 𝑝 = 0 ) )
31 30 biimpa ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝 = 𝑞 ) ∧ 𝑞 ⊆ ( ⊥ ‘ 𝑝 ) ) → 𝑝 = 0 )
32 31 an32s ( ( ( 𝑝 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝑝 ) ) ∧ 𝑝 = 𝑞 ) → 𝑝 = 0 )
33 32 ex ( ( 𝑝 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝑝 ) ) → ( 𝑝 = 𝑞𝑝 = 0 ) )
34 33 necon3d ( ( 𝑝 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝑝 ) ) → ( 𝑝 ≠ 0𝑝𝑞 ) )
35 25 34 mpd ( ( 𝑝 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝑝 ) ) → 𝑝𝑞 )
36 35 adantlr ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝𝐴 ) ∧ 𝑞 ⊆ ( ⊥ ‘ 𝑝 ) ) → 𝑝𝑞 )
37 23 36 syldan ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝𝐴 ) ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) → 𝑝𝑞 )
38 37 adantrl ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝𝐴 ) ∧ ( 𝑞 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) → 𝑝𝑞 )
39 superpos ( ( 𝑝 ∈ HAtoms ∧ 𝑞 ∈ HAtoms ∧ 𝑝𝑞 ) → ∃ 𝑟 ∈ HAtoms ( 𝑟𝑝𝑟𝑞𝑟 ⊆ ( 𝑝 𝑞 ) ) )
40 15 16 38 39 syl3anc ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝𝐴 ) ∧ ( 𝑞 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) → ∃ 𝑟 ∈ HAtoms ( 𝑟𝑝𝑟𝑞𝑟 ⊆ ( 𝑝 𝑞 ) ) )
41 df-3an ( ( 𝑟𝑝𝑟𝑞𝑟 ⊆ ( 𝑝 𝑞 ) ) ↔ ( ( 𝑟𝑝𝑟𝑞 ) ∧ 𝑟 ⊆ ( 𝑝 𝑞 ) ) )
42 neanior ( ( 𝑟𝑝𝑟𝑞 ) ↔ ¬ ( 𝑟 = 𝑝𝑟 = 𝑞 ) )
43 42 anbi1i ( ( ( 𝑟𝑝𝑟𝑞 ) ∧ 𝑟 ⊆ ( 𝑝 𝑞 ) ) ↔ ( ¬ ( 𝑟 = 𝑝𝑟 = 𝑞 ) ∧ 𝑟 ⊆ ( 𝑝 𝑞 ) ) )
44 41 43 bitri ( ( 𝑟𝑝𝑟𝑞𝑟 ⊆ ( 𝑝 𝑞 ) ) ↔ ( ¬ ( 𝑟 = 𝑝𝑟 = 𝑞 ) ∧ 𝑟 ⊆ ( 𝑝 𝑞 ) ) )
45 1 2 chirredlem4 ( ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝𝐴 ) ∧ ( 𝑞 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) ∧ ( 𝑟 ∈ HAtoms ∧ 𝑟 ⊆ ( 𝑝 𝑞 ) ) ) → ( 𝑟 = 𝑝𝑟 = 𝑞 ) )
46 45 anassrs ( ( ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝𝐴 ) ∧ ( 𝑞 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) ∧ 𝑟 ∈ HAtoms ) ∧ 𝑟 ⊆ ( 𝑝 𝑞 ) ) → ( 𝑟 = 𝑝𝑟 = 𝑞 ) )
47 46 pm2.24d ( ( ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝𝐴 ) ∧ ( 𝑞 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) ∧ 𝑟 ∈ HAtoms ) ∧ 𝑟 ⊆ ( 𝑝 𝑞 ) ) → ( ¬ ( 𝑟 = 𝑝𝑟 = 𝑞 ) → ¬ 0 = 0 ) )
48 47 ex ( ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝𝐴 ) ∧ ( 𝑞 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) ∧ 𝑟 ∈ HAtoms ) → ( 𝑟 ⊆ ( 𝑝 𝑞 ) → ( ¬ ( 𝑟 = 𝑝𝑟 = 𝑞 ) → ¬ 0 = 0 ) ) )
49 48 com23 ( ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝𝐴 ) ∧ ( 𝑞 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) ∧ 𝑟 ∈ HAtoms ) → ( ¬ ( 𝑟 = 𝑝𝑟 = 𝑞 ) → ( 𝑟 ⊆ ( 𝑝 𝑞 ) → ¬ 0 = 0 ) ) )
50 49 impd ( ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝𝐴 ) ∧ ( 𝑞 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) ∧ 𝑟 ∈ HAtoms ) → ( ( ¬ ( 𝑟 = 𝑝𝑟 = 𝑞 ) ∧ 𝑟 ⊆ ( 𝑝 𝑞 ) ) → ¬ 0 = 0 ) )
51 44 50 syl5bi ( ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝𝐴 ) ∧ ( 𝑞 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) ∧ 𝑟 ∈ HAtoms ) → ( ( 𝑟𝑝𝑟𝑞𝑟 ⊆ ( 𝑝 𝑞 ) ) → ¬ 0 = 0 ) )
52 51 rexlimdva ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝𝐴 ) ∧ ( 𝑞 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) → ( ∃ 𝑟 ∈ HAtoms ( 𝑟𝑝𝑟𝑞𝑟 ⊆ ( 𝑝 𝑞 ) ) → ¬ 0 = 0 ) )
53 40 52 mpd ( ( ( 𝑝 ∈ HAtoms ∧ 𝑝𝐴 ) ∧ ( 𝑞 ∈ HAtoms ∧ 𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) → ¬ 0 = 0 )
54 53 an4s ( ( ( 𝑝 ∈ HAtoms ∧ 𝑞 ∈ HAtoms ) ∧ ( 𝑝𝐴𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) ) → ¬ 0 = 0 )
55 54 ex ( ( 𝑝 ∈ HAtoms ∧ 𝑞 ∈ HAtoms ) → ( ( 𝑝𝐴𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) → ¬ 0 = 0 ) )
56 55 rexlimivv ( ∃ 𝑝 ∈ HAtoms ∃ 𝑞 ∈ HAtoms ( 𝑝𝐴𝑞 ⊆ ( ⊥ ‘ 𝐴 ) ) → ¬ 0 = 0 )
57 14 56 syl ( ( 𝐴 ≠ 0 ∧ ( ⊥ ‘ 𝐴 ) ≠ 0 ) → ¬ 0 = 0 )
58 8 57 sylbi ( ¬ ( 𝐴 = 0 ∨ ( ⊥ ‘ 𝐴 ) = 0 ) → ¬ 0 = 0 )
59 3 58 mt4 ( 𝐴 = 0 ∨ ( ⊥ ‘ 𝐴 ) = 0 )
60 fveq2 ( ( ⊥ ‘ 𝐴 ) = 0 → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = ( ⊥ ‘ 0 ) )
61 1 ococi ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = 𝐴
62 choc0 ( ⊥ ‘ 0 ) = ℋ
63 60 61 62 3eqtr3g ( ( ⊥ ‘ 𝐴 ) = 0𝐴 = ℋ )
64 63 orim2i ( ( 𝐴 = 0 ∨ ( ⊥ ‘ 𝐴 ) = 0 ) → ( 𝐴 = 0𝐴 = ℋ ) )
65 59 64 ax-mp ( 𝐴 = 0𝐴 = ℋ )