| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chirred.1 | ⊢ 𝐴  ∈   Cℋ | 
						
							| 2 |  | chirred.2 | ⊢ ( 𝑥  ∈   Cℋ   →  𝐴  𝐶ℋ  𝑥 ) | 
						
							| 3 |  | eqid | ⊢ 0ℋ  =  0ℋ | 
						
							| 4 |  | ioran | ⊢ ( ¬  ( 𝐴  =  0ℋ  ∨  ( ⊥ ‘ 𝐴 )  =  0ℋ )  ↔  ( ¬  𝐴  =  0ℋ  ∧  ¬  ( ⊥ ‘ 𝐴 )  =  0ℋ ) ) | 
						
							| 5 |  | df-ne | ⊢ ( 𝐴  ≠  0ℋ  ↔  ¬  𝐴  =  0ℋ ) | 
						
							| 6 |  | df-ne | ⊢ ( ( ⊥ ‘ 𝐴 )  ≠  0ℋ  ↔  ¬  ( ⊥ ‘ 𝐴 )  =  0ℋ ) | 
						
							| 7 | 5 6 | anbi12i | ⊢ ( ( 𝐴  ≠  0ℋ  ∧  ( ⊥ ‘ 𝐴 )  ≠  0ℋ )  ↔  ( ¬  𝐴  =  0ℋ  ∧  ¬  ( ⊥ ‘ 𝐴 )  =  0ℋ ) ) | 
						
							| 8 | 4 7 | bitr4i | ⊢ ( ¬  ( 𝐴  =  0ℋ  ∨  ( ⊥ ‘ 𝐴 )  =  0ℋ )  ↔  ( 𝐴  ≠  0ℋ  ∧  ( ⊥ ‘ 𝐴 )  ≠  0ℋ ) ) | 
						
							| 9 | 1 | hatomici | ⊢ ( 𝐴  ≠  0ℋ  →  ∃ 𝑝  ∈  HAtoms 𝑝  ⊆  𝐴 ) | 
						
							| 10 | 1 | choccli | ⊢ ( ⊥ ‘ 𝐴 )  ∈   Cℋ | 
						
							| 11 | 10 | hatomici | ⊢ ( ( ⊥ ‘ 𝐴 )  ≠  0ℋ  →  ∃ 𝑞  ∈  HAtoms 𝑞  ⊆  ( ⊥ ‘ 𝐴 ) ) | 
						
							| 12 | 9 11 | anim12i | ⊢ ( ( 𝐴  ≠  0ℋ  ∧  ( ⊥ ‘ 𝐴 )  ≠  0ℋ )  →  ( ∃ 𝑝  ∈  HAtoms 𝑝  ⊆  𝐴  ∧  ∃ 𝑞  ∈  HAtoms 𝑞  ⊆  ( ⊥ ‘ 𝐴 ) ) ) | 
						
							| 13 |  | reeanv | ⊢ ( ∃ 𝑝  ∈  HAtoms ∃ 𝑞  ∈  HAtoms ( 𝑝  ⊆  𝐴  ∧  𝑞  ⊆  ( ⊥ ‘ 𝐴 ) )  ↔  ( ∃ 𝑝  ∈  HAtoms 𝑝  ⊆  𝐴  ∧  ∃ 𝑞  ∈  HAtoms 𝑞  ⊆  ( ⊥ ‘ 𝐴 ) ) ) | 
						
							| 14 | 12 13 | sylibr | ⊢ ( ( 𝐴  ≠  0ℋ  ∧  ( ⊥ ‘ 𝐴 )  ≠  0ℋ )  →  ∃ 𝑝  ∈  HAtoms ∃ 𝑞  ∈  HAtoms ( 𝑝  ⊆  𝐴  ∧  𝑞  ⊆  ( ⊥ ‘ 𝐴 ) ) ) | 
						
							| 15 |  | simpll | ⊢ ( ( ( 𝑝  ∈  HAtoms  ∧  𝑝  ⊆  𝐴 )  ∧  ( 𝑞  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝐴 ) ) )  →  𝑝  ∈  HAtoms ) | 
						
							| 16 |  | simprl | ⊢ ( ( ( 𝑝  ∈  HAtoms  ∧  𝑝  ⊆  𝐴 )  ∧  ( 𝑞  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝐴 ) ) )  →  𝑞  ∈  HAtoms ) | 
						
							| 17 |  | atelch | ⊢ ( 𝑝  ∈  HAtoms  →  𝑝  ∈   Cℋ  ) | 
						
							| 18 |  | chsscon3 | ⊢ ( ( 𝑝  ∈   Cℋ   ∧  𝐴  ∈   Cℋ  )  →  ( 𝑝  ⊆  𝐴  ↔  ( ⊥ ‘ 𝐴 )  ⊆  ( ⊥ ‘ 𝑝 ) ) ) | 
						
							| 19 | 17 1 18 | sylancl | ⊢ ( 𝑝  ∈  HAtoms  →  ( 𝑝  ⊆  𝐴  ↔  ( ⊥ ‘ 𝐴 )  ⊆  ( ⊥ ‘ 𝑝 ) ) ) | 
						
							| 20 | 19 | biimpa | ⊢ ( ( 𝑝  ∈  HAtoms  ∧  𝑝  ⊆  𝐴 )  →  ( ⊥ ‘ 𝐴 )  ⊆  ( ⊥ ‘ 𝑝 ) ) | 
						
							| 21 |  | sstr | ⊢ ( ( 𝑞  ⊆  ( ⊥ ‘ 𝐴 )  ∧  ( ⊥ ‘ 𝐴 )  ⊆  ( ⊥ ‘ 𝑝 ) )  →  𝑞  ⊆  ( ⊥ ‘ 𝑝 ) ) | 
						
							| 22 | 20 21 | sylan2 | ⊢ ( ( 𝑞  ⊆  ( ⊥ ‘ 𝐴 )  ∧  ( 𝑝  ∈  HAtoms  ∧  𝑝  ⊆  𝐴 ) )  →  𝑞  ⊆  ( ⊥ ‘ 𝑝 ) ) | 
						
							| 23 | 22 | ancoms | ⊢ ( ( ( 𝑝  ∈  HAtoms  ∧  𝑝  ⊆  𝐴 )  ∧  𝑞  ⊆  ( ⊥ ‘ 𝐴 ) )  →  𝑞  ⊆  ( ⊥ ‘ 𝑝 ) ) | 
						
							| 24 |  | atne0 | ⊢ ( 𝑝  ∈  HAtoms  →  𝑝  ≠  0ℋ ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( 𝑝  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝑝 ) )  →  𝑝  ≠  0ℋ ) | 
						
							| 26 |  | sseq1 | ⊢ ( 𝑝  =  𝑞  →  ( 𝑝  ⊆  ( ⊥ ‘ 𝑝 )  ↔  𝑞  ⊆  ( ⊥ ‘ 𝑝 ) ) ) | 
						
							| 27 | 26 | bicomd | ⊢ ( 𝑝  =  𝑞  →  ( 𝑞  ⊆  ( ⊥ ‘ 𝑝 )  ↔  𝑝  ⊆  ( ⊥ ‘ 𝑝 ) ) ) | 
						
							| 28 |  | chssoc | ⊢ ( 𝑝  ∈   Cℋ   →  ( 𝑝  ⊆  ( ⊥ ‘ 𝑝 )  ↔  𝑝  =  0ℋ ) ) | 
						
							| 29 | 17 28 | syl | ⊢ ( 𝑝  ∈  HAtoms  →  ( 𝑝  ⊆  ( ⊥ ‘ 𝑝 )  ↔  𝑝  =  0ℋ ) ) | 
						
							| 30 | 27 29 | sylan9bbr | ⊢ ( ( 𝑝  ∈  HAtoms  ∧  𝑝  =  𝑞 )  →  ( 𝑞  ⊆  ( ⊥ ‘ 𝑝 )  ↔  𝑝  =  0ℋ ) ) | 
						
							| 31 | 30 | biimpa | ⊢ ( ( ( 𝑝  ∈  HAtoms  ∧  𝑝  =  𝑞 )  ∧  𝑞  ⊆  ( ⊥ ‘ 𝑝 ) )  →  𝑝  =  0ℋ ) | 
						
							| 32 | 31 | an32s | ⊢ ( ( ( 𝑝  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝑝 ) )  ∧  𝑝  =  𝑞 )  →  𝑝  =  0ℋ ) | 
						
							| 33 | 32 | ex | ⊢ ( ( 𝑝  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝑝 ) )  →  ( 𝑝  =  𝑞  →  𝑝  =  0ℋ ) ) | 
						
							| 34 | 33 | necon3d | ⊢ ( ( 𝑝  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝑝 ) )  →  ( 𝑝  ≠  0ℋ  →  𝑝  ≠  𝑞 ) ) | 
						
							| 35 | 25 34 | mpd | ⊢ ( ( 𝑝  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝑝 ) )  →  𝑝  ≠  𝑞 ) | 
						
							| 36 | 35 | adantlr | ⊢ ( ( ( 𝑝  ∈  HAtoms  ∧  𝑝  ⊆  𝐴 )  ∧  𝑞  ⊆  ( ⊥ ‘ 𝑝 ) )  →  𝑝  ≠  𝑞 ) | 
						
							| 37 | 23 36 | syldan | ⊢ ( ( ( 𝑝  ∈  HAtoms  ∧  𝑝  ⊆  𝐴 )  ∧  𝑞  ⊆  ( ⊥ ‘ 𝐴 ) )  →  𝑝  ≠  𝑞 ) | 
						
							| 38 | 37 | adantrl | ⊢ ( ( ( 𝑝  ∈  HAtoms  ∧  𝑝  ⊆  𝐴 )  ∧  ( 𝑞  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝐴 ) ) )  →  𝑝  ≠  𝑞 ) | 
						
							| 39 |  | superpos | ⊢ ( ( 𝑝  ∈  HAtoms  ∧  𝑞  ∈  HAtoms  ∧  𝑝  ≠  𝑞 )  →  ∃ 𝑟  ∈  HAtoms ( 𝑟  ≠  𝑝  ∧  𝑟  ≠  𝑞  ∧  𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 ) ) ) | 
						
							| 40 | 15 16 38 39 | syl3anc | ⊢ ( ( ( 𝑝  ∈  HAtoms  ∧  𝑝  ⊆  𝐴 )  ∧  ( 𝑞  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝐴 ) ) )  →  ∃ 𝑟  ∈  HAtoms ( 𝑟  ≠  𝑝  ∧  𝑟  ≠  𝑞  ∧  𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 ) ) ) | 
						
							| 41 |  | df-3an | ⊢ ( ( 𝑟  ≠  𝑝  ∧  𝑟  ≠  𝑞  ∧  𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 ) )  ↔  ( ( 𝑟  ≠  𝑝  ∧  𝑟  ≠  𝑞 )  ∧  𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 ) ) ) | 
						
							| 42 |  | neanior | ⊢ ( ( 𝑟  ≠  𝑝  ∧  𝑟  ≠  𝑞 )  ↔  ¬  ( 𝑟  =  𝑝  ∨  𝑟  =  𝑞 ) ) | 
						
							| 43 | 42 | anbi1i | ⊢ ( ( ( 𝑟  ≠  𝑝  ∧  𝑟  ≠  𝑞 )  ∧  𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 ) )  ↔  ( ¬  ( 𝑟  =  𝑝  ∨  𝑟  =  𝑞 )  ∧  𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 ) ) ) | 
						
							| 44 | 41 43 | bitri | ⊢ ( ( 𝑟  ≠  𝑝  ∧  𝑟  ≠  𝑞  ∧  𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 ) )  ↔  ( ¬  ( 𝑟  =  𝑝  ∨  𝑟  =  𝑞 )  ∧  𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 ) ) ) | 
						
							| 45 | 1 2 | chirredlem4 | ⊢ ( ( ( ( 𝑝  ∈  HAtoms  ∧  𝑝  ⊆  𝐴 )  ∧  ( 𝑞  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝐴 ) ) )  ∧  ( 𝑟  ∈  HAtoms  ∧  𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 ) ) )  →  ( 𝑟  =  𝑝  ∨  𝑟  =  𝑞 ) ) | 
						
							| 46 | 45 | anassrs | ⊢ ( ( ( ( ( 𝑝  ∈  HAtoms  ∧  𝑝  ⊆  𝐴 )  ∧  ( 𝑞  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝐴 ) ) )  ∧  𝑟  ∈  HAtoms )  ∧  𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 ) )  →  ( 𝑟  =  𝑝  ∨  𝑟  =  𝑞 ) ) | 
						
							| 47 | 46 | pm2.24d | ⊢ ( ( ( ( ( 𝑝  ∈  HAtoms  ∧  𝑝  ⊆  𝐴 )  ∧  ( 𝑞  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝐴 ) ) )  ∧  𝑟  ∈  HAtoms )  ∧  𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 ) )  →  ( ¬  ( 𝑟  =  𝑝  ∨  𝑟  =  𝑞 )  →  ¬  0ℋ  =  0ℋ ) ) | 
						
							| 48 | 47 | ex | ⊢ ( ( ( ( 𝑝  ∈  HAtoms  ∧  𝑝  ⊆  𝐴 )  ∧  ( 𝑞  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝐴 ) ) )  ∧  𝑟  ∈  HAtoms )  →  ( 𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 )  →  ( ¬  ( 𝑟  =  𝑝  ∨  𝑟  =  𝑞 )  →  ¬  0ℋ  =  0ℋ ) ) ) | 
						
							| 49 | 48 | com23 | ⊢ ( ( ( ( 𝑝  ∈  HAtoms  ∧  𝑝  ⊆  𝐴 )  ∧  ( 𝑞  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝐴 ) ) )  ∧  𝑟  ∈  HAtoms )  →  ( ¬  ( 𝑟  =  𝑝  ∨  𝑟  =  𝑞 )  →  ( 𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 )  →  ¬  0ℋ  =  0ℋ ) ) ) | 
						
							| 50 | 49 | impd | ⊢ ( ( ( ( 𝑝  ∈  HAtoms  ∧  𝑝  ⊆  𝐴 )  ∧  ( 𝑞  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝐴 ) ) )  ∧  𝑟  ∈  HAtoms )  →  ( ( ¬  ( 𝑟  =  𝑝  ∨  𝑟  =  𝑞 )  ∧  𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 ) )  →  ¬  0ℋ  =  0ℋ ) ) | 
						
							| 51 | 44 50 | biimtrid | ⊢ ( ( ( ( 𝑝  ∈  HAtoms  ∧  𝑝  ⊆  𝐴 )  ∧  ( 𝑞  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝐴 ) ) )  ∧  𝑟  ∈  HAtoms )  →  ( ( 𝑟  ≠  𝑝  ∧  𝑟  ≠  𝑞  ∧  𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 ) )  →  ¬  0ℋ  =  0ℋ ) ) | 
						
							| 52 | 51 | rexlimdva | ⊢ ( ( ( 𝑝  ∈  HAtoms  ∧  𝑝  ⊆  𝐴 )  ∧  ( 𝑞  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝐴 ) ) )  →  ( ∃ 𝑟  ∈  HAtoms ( 𝑟  ≠  𝑝  ∧  𝑟  ≠  𝑞  ∧  𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 ) )  →  ¬  0ℋ  =  0ℋ ) ) | 
						
							| 53 | 40 52 | mpd | ⊢ ( ( ( 𝑝  ∈  HAtoms  ∧  𝑝  ⊆  𝐴 )  ∧  ( 𝑞  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝐴 ) ) )  →  ¬  0ℋ  =  0ℋ ) | 
						
							| 54 | 53 | an4s | ⊢ ( ( ( 𝑝  ∈  HAtoms  ∧  𝑞  ∈  HAtoms )  ∧  ( 𝑝  ⊆  𝐴  ∧  𝑞  ⊆  ( ⊥ ‘ 𝐴 ) ) )  →  ¬  0ℋ  =  0ℋ ) | 
						
							| 55 | 54 | ex | ⊢ ( ( 𝑝  ∈  HAtoms  ∧  𝑞  ∈  HAtoms )  →  ( ( 𝑝  ⊆  𝐴  ∧  𝑞  ⊆  ( ⊥ ‘ 𝐴 ) )  →  ¬  0ℋ  =  0ℋ ) ) | 
						
							| 56 | 55 | rexlimivv | ⊢ ( ∃ 𝑝  ∈  HAtoms ∃ 𝑞  ∈  HAtoms ( 𝑝  ⊆  𝐴  ∧  𝑞  ⊆  ( ⊥ ‘ 𝐴 ) )  →  ¬  0ℋ  =  0ℋ ) | 
						
							| 57 | 14 56 | syl | ⊢ ( ( 𝐴  ≠  0ℋ  ∧  ( ⊥ ‘ 𝐴 )  ≠  0ℋ )  →  ¬  0ℋ  =  0ℋ ) | 
						
							| 58 | 8 57 | sylbi | ⊢ ( ¬  ( 𝐴  =  0ℋ  ∨  ( ⊥ ‘ 𝐴 )  =  0ℋ )  →  ¬  0ℋ  =  0ℋ ) | 
						
							| 59 | 3 58 | mt4 | ⊢ ( 𝐴  =  0ℋ  ∨  ( ⊥ ‘ 𝐴 )  =  0ℋ ) | 
						
							| 60 |  | fveq2 | ⊢ ( ( ⊥ ‘ 𝐴 )  =  0ℋ  →  ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) )  =  ( ⊥ ‘ 0ℋ ) ) | 
						
							| 61 | 1 | ococi | ⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) )  =  𝐴 | 
						
							| 62 |  | choc0 | ⊢ ( ⊥ ‘ 0ℋ )  =   ℋ | 
						
							| 63 | 60 61 62 | 3eqtr3g | ⊢ ( ( ⊥ ‘ 𝐴 )  =  0ℋ  →  𝐴  =   ℋ ) | 
						
							| 64 | 63 | orim2i | ⊢ ( ( 𝐴  =  0ℋ  ∨  ( ⊥ ‘ 𝐴 )  =  0ℋ )  →  ( 𝐴  =  0ℋ  ∨  𝐴  =   ℋ ) ) | 
						
							| 65 | 59 64 | ax-mp | ⊢ ( 𝐴  =  0ℋ  ∨  𝐴  =   ℋ ) |