Step |
Hyp |
Ref |
Expression |
1 |
|
chirred.1 |
|
2 |
|
chirred.2 |
|
3 |
|
eqid |
|
4 |
|
ioran |
|
5 |
|
df-ne |
|
6 |
|
df-ne |
|
7 |
5 6
|
anbi12i |
|
8 |
4 7
|
bitr4i |
|
9 |
1
|
hatomici |
|
10 |
1
|
choccli |
|
11 |
10
|
hatomici |
|
12 |
9 11
|
anim12i |
|
13 |
|
reeanv |
|
14 |
12 13
|
sylibr |
|
15 |
|
simpll |
|
16 |
|
simprl |
|
17 |
|
atelch |
|
18 |
|
chsscon3 |
|
19 |
17 1 18
|
sylancl |
|
20 |
19
|
biimpa |
|
21 |
|
sstr |
|
22 |
20 21
|
sylan2 |
|
23 |
22
|
ancoms |
|
24 |
|
atne0 |
|
25 |
24
|
adantr |
|
26 |
|
sseq1 |
|
27 |
26
|
bicomd |
|
28 |
|
chssoc |
|
29 |
17 28
|
syl |
|
30 |
27 29
|
sylan9bbr |
|
31 |
30
|
biimpa |
|
32 |
31
|
an32s |
|
33 |
32
|
ex |
|
34 |
33
|
necon3d |
|
35 |
25 34
|
mpd |
|
36 |
35
|
adantlr |
|
37 |
23 36
|
syldan |
|
38 |
37
|
adantrl |
|
39 |
|
superpos |
|
40 |
15 16 38 39
|
syl3anc |
|
41 |
|
df-3an |
|
42 |
|
neanior |
|
43 |
42
|
anbi1i |
|
44 |
41 43
|
bitri |
|
45 |
1 2
|
chirredlem4 |
|
46 |
45
|
anassrs |
|
47 |
46
|
pm2.24d |
|
48 |
47
|
ex |
|
49 |
48
|
com23 |
|
50 |
49
|
impd |
|
51 |
44 50
|
syl5bi |
|
52 |
51
|
rexlimdva |
|
53 |
40 52
|
mpd |
|
54 |
53
|
an4s |
|
55 |
54
|
ex |
|
56 |
55
|
rexlimivv |
|
57 |
14 56
|
syl |
|
58 |
8 57
|
sylbi |
|
59 |
3 58
|
mt4 |
|
60 |
|
fveq2 |
|
61 |
1
|
ococi |
|
62 |
|
choc0 |
|
63 |
60 61 62
|
3eqtr3g |
|
64 |
63
|
orim2i |
|
65 |
59 64
|
ax-mp |
|