| Step |
Hyp |
Ref |
Expression |
| 1 |
|
atom1d |
|
| 2 |
|
atom1d |
|
| 3 |
|
reeanv |
|
| 4 |
|
an4 |
|
| 5 |
|
neeq1 |
|
| 6 |
|
neeq2 |
|
| 7 |
5 6
|
sylan9bb |
|
| 8 |
7
|
adantl |
|
| 9 |
|
hvaddcl |
|
| 10 |
9
|
adantr |
|
| 11 |
|
hvaddeq0 |
|
| 12 |
|
sneq |
|
| 13 |
12
|
fveq2d |
|
| 14 |
|
neg1cn |
|
| 15 |
|
neg1ne0 |
|
| 16 |
|
spansncol |
|
| 17 |
14 15 16
|
mp3an23 |
|
| 18 |
13 17
|
sylan9eqr |
|
| 19 |
18
|
ex |
|
| 20 |
19
|
adantl |
|
| 21 |
11 20
|
sylbid |
|
| 22 |
21
|
necon3d |
|
| 23 |
22
|
imp |
|
| 24 |
|
spansna |
|
| 25 |
10 23 24
|
syl2anc |
|
| 26 |
25
|
adantlr |
|
| 27 |
26
|
adantlr |
|
| 28 |
|
eqeq2 |
|
| 29 |
28
|
biimpd |
|
| 30 |
|
spansneleqi |
|
| 31 |
9 30
|
syl |
|
| 32 |
|
elspansn |
|
| 33 |
32
|
adantr |
|
| 34 |
|
addcl |
|
| 35 |
14 34
|
mpan2 |
|
| 36 |
35
|
ad2antlr |
|
| 37 |
|
hvmulcl |
|
| 38 |
37
|
ancoms |
|
| 39 |
38
|
adantlr |
|
| 40 |
|
simpll |
|
| 41 |
|
simplr |
|
| 42 |
|
hvsubadd |
|
| 43 |
39 40 41 42
|
syl3anc |
|
| 44 |
43
|
biimpar |
|
| 45 |
|
hvsubval |
|
| 46 |
37 45
|
sylancom |
|
| 47 |
|
ax-hvdistr2 |
|
| 48 |
14 47
|
mp3an2 |
|
| 49 |
46 48
|
eqtr4d |
|
| 50 |
49
|
ancoms |
|
| 51 |
50
|
adantlr |
|
| 52 |
51
|
adantr |
|
| 53 |
44 52
|
eqtr3d |
|
| 54 |
|
oveq1 |
|
| 55 |
54
|
rspceeqv |
|
| 56 |
36 53 55
|
syl2anc |
|
| 57 |
56
|
rexlimdva2 |
|
| 58 |
33 57
|
sylbid |
|
| 59 |
31 58
|
syld |
|
| 60 |
|
elspansn |
|
| 61 |
60
|
adantr |
|
| 62 |
59 61
|
sylibrd |
|
| 63 |
62
|
adantr |
|
| 64 |
|
spansneleq |
|
| 65 |
|
eqcom |
|
| 66 |
64 65
|
imbitrdi |
|
| 67 |
66
|
adantlr |
|
| 68 |
63 67
|
syld |
|
| 69 |
29 68
|
sylan9r |
|
| 70 |
69
|
necon3d |
|
| 71 |
70
|
adantlrl |
|
| 72 |
71
|
adantrr |
|
| 73 |
72
|
imp |
|
| 74 |
|
eqeq2 |
|
| 75 |
74
|
biimpd |
|
| 76 |
|
spansneleqi |
|
| 77 |
9 76
|
syl |
|
| 78 |
|
elspansn |
|
| 79 |
78
|
adantl |
|
| 80 |
35
|
ad2antlr |
|
| 81 |
|
hvmulcl |
|
| 82 |
81
|
ancoms |
|
| 83 |
82
|
adantll |
|
| 84 |
|
hvsubadd |
|
| 85 |
83 41 40 84
|
syl3anc |
|
| 86 |
|
ax-hvcom |
|
| 87 |
86
|
adantr |
|
| 88 |
87
|
eqeq1d |
|
| 89 |
85 88
|
bitr4d |
|
| 90 |
89
|
biimpar |
|
| 91 |
|
hvsubval |
|
| 92 |
81 91
|
sylancom |
|
| 93 |
|
ax-hvdistr2 |
|
| 94 |
14 93
|
mp3an2 |
|
| 95 |
92 94
|
eqtr4d |
|
| 96 |
95
|
ancoms |
|
| 97 |
96
|
adantll |
|
| 98 |
97
|
adantr |
|
| 99 |
90 98
|
eqtr3d |
|
| 100 |
|
oveq1 |
|
| 101 |
100
|
rspceeqv |
|
| 102 |
80 99 101
|
syl2anc |
|
| 103 |
102
|
rexlimdva2 |
|
| 104 |
79 103
|
sylbid |
|
| 105 |
77 104
|
syld |
|
| 106 |
|
elspansn |
|
| 107 |
106
|
adantl |
|
| 108 |
105 107
|
sylibrd |
|
| 109 |
108
|
adantr |
|
| 110 |
|
spansneleq |
|
| 111 |
110
|
adantll |
|
| 112 |
109 111
|
syld |
|
| 113 |
75 112
|
sylan9r |
|
| 114 |
113
|
necon3d |
|
| 115 |
114
|
adantlrr |
|
| 116 |
115
|
adantrl |
|
| 117 |
116
|
imp |
|
| 118 |
|
spanpr |
|
| 119 |
118
|
adantr |
|
| 120 |
|
oveq12 |
|
| 121 |
|
df-pr |
|
| 122 |
121
|
fveq2i |
|
| 123 |
|
snssi |
|
| 124 |
|
snssi |
|
| 125 |
|
spanun |
|
| 126 |
123 124 125
|
syl2an |
|
| 127 |
122 126
|
eqtrid |
|
| 128 |
|
spansnch |
|
| 129 |
|
spansnj |
|
| 130 |
128 129
|
sylan |
|
| 131 |
127 130
|
eqtr2d |
|
| 132 |
120 131
|
sylan9eqr |
|
| 133 |
119 132
|
sseqtrrd |
|
| 134 |
133
|
adantlr |
|
| 135 |
134
|
adantr |
|
| 136 |
|
neeq1 |
|
| 137 |
|
neeq1 |
|
| 138 |
|
sseq1 |
|
| 139 |
136 137 138
|
3anbi123d |
|
| 140 |
139
|
rspcev |
|
| 141 |
27 73 117 135 140
|
syl13anc |
|
| 142 |
141
|
ex |
|
| 143 |
8 142
|
sylbid |
|
| 144 |
143
|
expl |
|
| 145 |
4 144
|
biimtrid |
|
| 146 |
145
|
rexlimivv |
|
| 147 |
3 146
|
sylbir |
|
| 148 |
1 2 147
|
syl2anb |
|
| 149 |
148
|
3impia |
|