| Step |
Hyp |
Ref |
Expression |
| 1 |
|
atom1d |
⊢ ( 𝐴 ∈ HAtoms ↔ ∃ 𝑦 ∈ ℋ ( 𝑦 ≠ 0ℎ ∧ 𝐴 = ( span ‘ { 𝑦 } ) ) ) |
| 2 |
|
atom1d |
⊢ ( 𝐵 ∈ HAtoms ↔ ∃ 𝑧 ∈ ℋ ( 𝑧 ≠ 0ℎ ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) |
| 3 |
|
reeanv |
⊢ ( ∃ 𝑦 ∈ ℋ ∃ 𝑧 ∈ ℋ ( ( 𝑦 ≠ 0ℎ ∧ 𝐴 = ( span ‘ { 𝑦 } ) ) ∧ ( 𝑧 ≠ 0ℎ ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) ↔ ( ∃ 𝑦 ∈ ℋ ( 𝑦 ≠ 0ℎ ∧ 𝐴 = ( span ‘ { 𝑦 } ) ) ∧ ∃ 𝑧 ∈ ℋ ( 𝑧 ≠ 0ℎ ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) ) |
| 4 |
|
an4 |
⊢ ( ( ( 𝑦 ≠ 0ℎ ∧ 𝐴 = ( span ‘ { 𝑦 } ) ) ∧ ( 𝑧 ≠ 0ℎ ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) ↔ ( ( 𝑦 ≠ 0ℎ ∧ 𝑧 ≠ 0ℎ ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) ) |
| 5 |
|
neeq1 |
⊢ ( 𝐴 = ( span ‘ { 𝑦 } ) → ( 𝐴 ≠ 𝐵 ↔ ( span ‘ { 𝑦 } ) ≠ 𝐵 ) ) |
| 6 |
|
neeq2 |
⊢ ( 𝐵 = ( span ‘ { 𝑧 } ) → ( ( span ‘ { 𝑦 } ) ≠ 𝐵 ↔ ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) ) ) |
| 7 |
5 6
|
sylan9bb |
⊢ ( ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) → ( 𝐴 ≠ 𝐵 ↔ ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) ) ) |
| 8 |
7
|
adantl |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝑦 ≠ 0ℎ ∧ 𝑧 ≠ 0ℎ ) ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) → ( 𝐴 ≠ 𝐵 ↔ ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) ) ) |
| 9 |
|
hvaddcl |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑦 +ℎ 𝑧 ) ∈ ℋ ) |
| 10 |
9
|
adantr |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) ) → ( 𝑦 +ℎ 𝑧 ) ∈ ℋ ) |
| 11 |
|
hvaddeq0 |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑦 +ℎ 𝑧 ) = 0ℎ ↔ 𝑦 = ( - 1 ·ℎ 𝑧 ) ) ) |
| 12 |
|
sneq |
⊢ ( 𝑦 = ( - 1 ·ℎ 𝑧 ) → { 𝑦 } = { ( - 1 ·ℎ 𝑧 ) } ) |
| 13 |
12
|
fveq2d |
⊢ ( 𝑦 = ( - 1 ·ℎ 𝑧 ) → ( span ‘ { 𝑦 } ) = ( span ‘ { ( - 1 ·ℎ 𝑧 ) } ) ) |
| 14 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 15 |
|
neg1ne0 |
⊢ - 1 ≠ 0 |
| 16 |
|
spansncol |
⊢ ( ( 𝑧 ∈ ℋ ∧ - 1 ∈ ℂ ∧ - 1 ≠ 0 ) → ( span ‘ { ( - 1 ·ℎ 𝑧 ) } ) = ( span ‘ { 𝑧 } ) ) |
| 17 |
14 15 16
|
mp3an23 |
⊢ ( 𝑧 ∈ ℋ → ( span ‘ { ( - 1 ·ℎ 𝑧 ) } ) = ( span ‘ { 𝑧 } ) ) |
| 18 |
13 17
|
sylan9eqr |
⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑦 = ( - 1 ·ℎ 𝑧 ) ) → ( span ‘ { 𝑦 } ) = ( span ‘ { 𝑧 } ) ) |
| 19 |
18
|
ex |
⊢ ( 𝑧 ∈ ℋ → ( 𝑦 = ( - 1 ·ℎ 𝑧 ) → ( span ‘ { 𝑦 } ) = ( span ‘ { 𝑧 } ) ) ) |
| 20 |
19
|
adantl |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑦 = ( - 1 ·ℎ 𝑧 ) → ( span ‘ { 𝑦 } ) = ( span ‘ { 𝑧 } ) ) ) |
| 21 |
11 20
|
sylbid |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑦 +ℎ 𝑧 ) = 0ℎ → ( span ‘ { 𝑦 } ) = ( span ‘ { 𝑧 } ) ) ) |
| 22 |
21
|
necon3d |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) → ( 𝑦 +ℎ 𝑧 ) ≠ 0ℎ ) ) |
| 23 |
22
|
imp |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) ) → ( 𝑦 +ℎ 𝑧 ) ≠ 0ℎ ) |
| 24 |
|
spansna |
⊢ ( ( ( 𝑦 +ℎ 𝑧 ) ∈ ℋ ∧ ( 𝑦 +ℎ 𝑧 ) ≠ 0ℎ ) → ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ∈ HAtoms ) |
| 25 |
10 23 24
|
syl2anc |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) ) → ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ∈ HAtoms ) |
| 26 |
25
|
adantlr |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝑦 ≠ 0ℎ ∧ 𝑧 ≠ 0ℎ ) ) ∧ ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) ) → ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ∈ HAtoms ) |
| 27 |
26
|
adantlr |
⊢ ( ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝑦 ≠ 0ℎ ∧ 𝑧 ≠ 0ℎ ) ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) ∧ ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) ) → ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ∈ HAtoms ) |
| 28 |
|
eqeq2 |
⊢ ( 𝐴 = ( span ‘ { 𝑦 } ) → ( ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = 𝐴 ↔ ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = ( span ‘ { 𝑦 } ) ) ) |
| 29 |
28
|
biimpd |
⊢ ( 𝐴 = ( span ‘ { 𝑦 } ) → ( ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = 𝐴 → ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = ( span ‘ { 𝑦 } ) ) ) |
| 30 |
|
spansneleqi |
⊢ ( ( 𝑦 +ℎ 𝑧 ) ∈ ℋ → ( ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = ( span ‘ { 𝑦 } ) → ( 𝑦 +ℎ 𝑧 ) ∈ ( span ‘ { 𝑦 } ) ) ) |
| 31 |
9 30
|
syl |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = ( span ‘ { 𝑦 } ) → ( 𝑦 +ℎ 𝑧 ) ∈ ( span ‘ { 𝑦 } ) ) ) |
| 32 |
|
elspansn |
⊢ ( 𝑦 ∈ ℋ → ( ( 𝑦 +ℎ 𝑧 ) ∈ ( span ‘ { 𝑦 } ) ↔ ∃ 𝑣 ∈ ℂ ( 𝑦 +ℎ 𝑧 ) = ( 𝑣 ·ℎ 𝑦 ) ) ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑦 +ℎ 𝑧 ) ∈ ( span ‘ { 𝑦 } ) ↔ ∃ 𝑣 ∈ ℂ ( 𝑦 +ℎ 𝑧 ) = ( 𝑣 ·ℎ 𝑦 ) ) ) |
| 34 |
|
addcl |
⊢ ( ( 𝑣 ∈ ℂ ∧ - 1 ∈ ℂ ) → ( 𝑣 + - 1 ) ∈ ℂ ) |
| 35 |
14 34
|
mpan2 |
⊢ ( 𝑣 ∈ ℂ → ( 𝑣 + - 1 ) ∈ ℂ ) |
| 36 |
35
|
ad2antlr |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) ∧ ( 𝑦 +ℎ 𝑧 ) = ( 𝑣 ·ℎ 𝑦 ) ) → ( 𝑣 + - 1 ) ∈ ℂ ) |
| 37 |
|
hvmulcl |
⊢ ( ( 𝑣 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑣 ·ℎ 𝑦 ) ∈ ℋ ) |
| 38 |
37
|
ancoms |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑣 ∈ ℂ ) → ( 𝑣 ·ℎ 𝑦 ) ∈ ℋ ) |
| 39 |
38
|
adantlr |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) → ( 𝑣 ·ℎ 𝑦 ) ∈ ℋ ) |
| 40 |
|
simpll |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) → 𝑦 ∈ ℋ ) |
| 41 |
|
simplr |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) → 𝑧 ∈ ℋ ) |
| 42 |
|
hvsubadd |
⊢ ( ( ( 𝑣 ·ℎ 𝑦 ) ∈ ℋ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( ( 𝑣 ·ℎ 𝑦 ) −ℎ 𝑦 ) = 𝑧 ↔ ( 𝑦 +ℎ 𝑧 ) = ( 𝑣 ·ℎ 𝑦 ) ) ) |
| 43 |
39 40 41 42
|
syl3anc |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) → ( ( ( 𝑣 ·ℎ 𝑦 ) −ℎ 𝑦 ) = 𝑧 ↔ ( 𝑦 +ℎ 𝑧 ) = ( 𝑣 ·ℎ 𝑦 ) ) ) |
| 44 |
43
|
biimpar |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) ∧ ( 𝑦 +ℎ 𝑧 ) = ( 𝑣 ·ℎ 𝑦 ) ) → ( ( 𝑣 ·ℎ 𝑦 ) −ℎ 𝑦 ) = 𝑧 ) |
| 45 |
|
hvsubval |
⊢ ( ( ( 𝑣 ·ℎ 𝑦 ) ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑣 ·ℎ 𝑦 ) −ℎ 𝑦 ) = ( ( 𝑣 ·ℎ 𝑦 ) +ℎ ( - 1 ·ℎ 𝑦 ) ) ) |
| 46 |
37 45
|
sylancom |
⊢ ( ( 𝑣 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑣 ·ℎ 𝑦 ) −ℎ 𝑦 ) = ( ( 𝑣 ·ℎ 𝑦 ) +ℎ ( - 1 ·ℎ 𝑦 ) ) ) |
| 47 |
|
ax-hvdistr2 |
⊢ ( ( 𝑣 ∈ ℂ ∧ - 1 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑣 + - 1 ) ·ℎ 𝑦 ) = ( ( 𝑣 ·ℎ 𝑦 ) +ℎ ( - 1 ·ℎ 𝑦 ) ) ) |
| 48 |
14 47
|
mp3an2 |
⊢ ( ( 𝑣 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑣 + - 1 ) ·ℎ 𝑦 ) = ( ( 𝑣 ·ℎ 𝑦 ) +ℎ ( - 1 ·ℎ 𝑦 ) ) ) |
| 49 |
46 48
|
eqtr4d |
⊢ ( ( 𝑣 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑣 ·ℎ 𝑦 ) −ℎ 𝑦 ) = ( ( 𝑣 + - 1 ) ·ℎ 𝑦 ) ) |
| 50 |
49
|
ancoms |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑣 ∈ ℂ ) → ( ( 𝑣 ·ℎ 𝑦 ) −ℎ 𝑦 ) = ( ( 𝑣 + - 1 ) ·ℎ 𝑦 ) ) |
| 51 |
50
|
adantlr |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) → ( ( 𝑣 ·ℎ 𝑦 ) −ℎ 𝑦 ) = ( ( 𝑣 + - 1 ) ·ℎ 𝑦 ) ) |
| 52 |
51
|
adantr |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) ∧ ( 𝑦 +ℎ 𝑧 ) = ( 𝑣 ·ℎ 𝑦 ) ) → ( ( 𝑣 ·ℎ 𝑦 ) −ℎ 𝑦 ) = ( ( 𝑣 + - 1 ) ·ℎ 𝑦 ) ) |
| 53 |
44 52
|
eqtr3d |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) ∧ ( 𝑦 +ℎ 𝑧 ) = ( 𝑣 ·ℎ 𝑦 ) ) → 𝑧 = ( ( 𝑣 + - 1 ) ·ℎ 𝑦 ) ) |
| 54 |
|
oveq1 |
⊢ ( 𝑤 = ( 𝑣 + - 1 ) → ( 𝑤 ·ℎ 𝑦 ) = ( ( 𝑣 + - 1 ) ·ℎ 𝑦 ) ) |
| 55 |
54
|
rspceeqv |
⊢ ( ( ( 𝑣 + - 1 ) ∈ ℂ ∧ 𝑧 = ( ( 𝑣 + - 1 ) ·ℎ 𝑦 ) ) → ∃ 𝑤 ∈ ℂ 𝑧 = ( 𝑤 ·ℎ 𝑦 ) ) |
| 56 |
36 53 55
|
syl2anc |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) ∧ ( 𝑦 +ℎ 𝑧 ) = ( 𝑣 ·ℎ 𝑦 ) ) → ∃ 𝑤 ∈ ℂ 𝑧 = ( 𝑤 ·ℎ 𝑦 ) ) |
| 57 |
56
|
rexlimdva2 |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ∃ 𝑣 ∈ ℂ ( 𝑦 +ℎ 𝑧 ) = ( 𝑣 ·ℎ 𝑦 ) → ∃ 𝑤 ∈ ℂ 𝑧 = ( 𝑤 ·ℎ 𝑦 ) ) ) |
| 58 |
33 57
|
sylbid |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑦 +ℎ 𝑧 ) ∈ ( span ‘ { 𝑦 } ) → ∃ 𝑤 ∈ ℂ 𝑧 = ( 𝑤 ·ℎ 𝑦 ) ) ) |
| 59 |
31 58
|
syld |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = ( span ‘ { 𝑦 } ) → ∃ 𝑤 ∈ ℂ 𝑧 = ( 𝑤 ·ℎ 𝑦 ) ) ) |
| 60 |
|
elspansn |
⊢ ( 𝑦 ∈ ℋ → ( 𝑧 ∈ ( span ‘ { 𝑦 } ) ↔ ∃ 𝑤 ∈ ℂ 𝑧 = ( 𝑤 ·ℎ 𝑦 ) ) ) |
| 61 |
60
|
adantr |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑧 ∈ ( span ‘ { 𝑦 } ) ↔ ∃ 𝑤 ∈ ℂ 𝑧 = ( 𝑤 ·ℎ 𝑦 ) ) ) |
| 62 |
59 61
|
sylibrd |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = ( span ‘ { 𝑦 } ) → 𝑧 ∈ ( span ‘ { 𝑦 } ) ) ) |
| 63 |
62
|
adantr |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑧 ≠ 0ℎ ) → ( ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = ( span ‘ { 𝑦 } ) → 𝑧 ∈ ( span ‘ { 𝑦 } ) ) ) |
| 64 |
|
spansneleq |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ≠ 0ℎ ) → ( 𝑧 ∈ ( span ‘ { 𝑦 } ) → ( span ‘ { 𝑧 } ) = ( span ‘ { 𝑦 } ) ) ) |
| 65 |
|
eqcom |
⊢ ( ( span ‘ { 𝑧 } ) = ( span ‘ { 𝑦 } ) ↔ ( span ‘ { 𝑦 } ) = ( span ‘ { 𝑧 } ) ) |
| 66 |
64 65
|
imbitrdi |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ≠ 0ℎ ) → ( 𝑧 ∈ ( span ‘ { 𝑦 } ) → ( span ‘ { 𝑦 } ) = ( span ‘ { 𝑧 } ) ) ) |
| 67 |
66
|
adantlr |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑧 ≠ 0ℎ ) → ( 𝑧 ∈ ( span ‘ { 𝑦 } ) → ( span ‘ { 𝑦 } ) = ( span ‘ { 𝑧 } ) ) ) |
| 68 |
63 67
|
syld |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑧 ≠ 0ℎ ) → ( ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = ( span ‘ { 𝑦 } ) → ( span ‘ { 𝑦 } ) = ( span ‘ { 𝑧 } ) ) ) |
| 69 |
29 68
|
sylan9r |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑧 ≠ 0ℎ ) ∧ 𝐴 = ( span ‘ { 𝑦 } ) ) → ( ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = 𝐴 → ( span ‘ { 𝑦 } ) = ( span ‘ { 𝑧 } ) ) ) |
| 70 |
69
|
necon3d |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑧 ≠ 0ℎ ) ∧ 𝐴 = ( span ‘ { 𝑦 } ) ) → ( ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) → ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ≠ 𝐴 ) ) |
| 71 |
70
|
adantlrl |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝑦 ≠ 0ℎ ∧ 𝑧 ≠ 0ℎ ) ) ∧ 𝐴 = ( span ‘ { 𝑦 } ) ) → ( ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) → ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ≠ 𝐴 ) ) |
| 72 |
71
|
adantrr |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝑦 ≠ 0ℎ ∧ 𝑧 ≠ 0ℎ ) ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) → ( ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) → ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ≠ 𝐴 ) ) |
| 73 |
72
|
imp |
⊢ ( ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝑦 ≠ 0ℎ ∧ 𝑧 ≠ 0ℎ ) ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) ∧ ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) ) → ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ≠ 𝐴 ) |
| 74 |
|
eqeq2 |
⊢ ( 𝐵 = ( span ‘ { 𝑧 } ) → ( ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = 𝐵 ↔ ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = ( span ‘ { 𝑧 } ) ) ) |
| 75 |
74
|
biimpd |
⊢ ( 𝐵 = ( span ‘ { 𝑧 } ) → ( ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = 𝐵 → ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = ( span ‘ { 𝑧 } ) ) ) |
| 76 |
|
spansneleqi |
⊢ ( ( 𝑦 +ℎ 𝑧 ) ∈ ℋ → ( ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = ( span ‘ { 𝑧 } ) → ( 𝑦 +ℎ 𝑧 ) ∈ ( span ‘ { 𝑧 } ) ) ) |
| 77 |
9 76
|
syl |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = ( span ‘ { 𝑧 } ) → ( 𝑦 +ℎ 𝑧 ) ∈ ( span ‘ { 𝑧 } ) ) ) |
| 78 |
|
elspansn |
⊢ ( 𝑧 ∈ ℋ → ( ( 𝑦 +ℎ 𝑧 ) ∈ ( span ‘ { 𝑧 } ) ↔ ∃ 𝑣 ∈ ℂ ( 𝑦 +ℎ 𝑧 ) = ( 𝑣 ·ℎ 𝑧 ) ) ) |
| 79 |
78
|
adantl |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑦 +ℎ 𝑧 ) ∈ ( span ‘ { 𝑧 } ) ↔ ∃ 𝑣 ∈ ℂ ( 𝑦 +ℎ 𝑧 ) = ( 𝑣 ·ℎ 𝑧 ) ) ) |
| 80 |
35
|
ad2antlr |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) ∧ ( 𝑦 +ℎ 𝑧 ) = ( 𝑣 ·ℎ 𝑧 ) ) → ( 𝑣 + - 1 ) ∈ ℂ ) |
| 81 |
|
hvmulcl |
⊢ ( ( 𝑣 ∈ ℂ ∧ 𝑧 ∈ ℋ ) → ( 𝑣 ·ℎ 𝑧 ) ∈ ℋ ) |
| 82 |
81
|
ancoms |
⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑣 ∈ ℂ ) → ( 𝑣 ·ℎ 𝑧 ) ∈ ℋ ) |
| 83 |
82
|
adantll |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) → ( 𝑣 ·ℎ 𝑧 ) ∈ ℋ ) |
| 84 |
|
hvsubadd |
⊢ ( ( ( 𝑣 ·ℎ 𝑧 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( 𝑣 ·ℎ 𝑧 ) −ℎ 𝑧 ) = 𝑦 ↔ ( 𝑧 +ℎ 𝑦 ) = ( 𝑣 ·ℎ 𝑧 ) ) ) |
| 85 |
83 41 40 84
|
syl3anc |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) → ( ( ( 𝑣 ·ℎ 𝑧 ) −ℎ 𝑧 ) = 𝑦 ↔ ( 𝑧 +ℎ 𝑦 ) = ( 𝑣 ·ℎ 𝑧 ) ) ) |
| 86 |
|
ax-hvcom |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑦 +ℎ 𝑧 ) = ( 𝑧 +ℎ 𝑦 ) ) |
| 87 |
86
|
adantr |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) → ( 𝑦 +ℎ 𝑧 ) = ( 𝑧 +ℎ 𝑦 ) ) |
| 88 |
87
|
eqeq1d |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) → ( ( 𝑦 +ℎ 𝑧 ) = ( 𝑣 ·ℎ 𝑧 ) ↔ ( 𝑧 +ℎ 𝑦 ) = ( 𝑣 ·ℎ 𝑧 ) ) ) |
| 89 |
85 88
|
bitr4d |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) → ( ( ( 𝑣 ·ℎ 𝑧 ) −ℎ 𝑧 ) = 𝑦 ↔ ( 𝑦 +ℎ 𝑧 ) = ( 𝑣 ·ℎ 𝑧 ) ) ) |
| 90 |
89
|
biimpar |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) ∧ ( 𝑦 +ℎ 𝑧 ) = ( 𝑣 ·ℎ 𝑧 ) ) → ( ( 𝑣 ·ℎ 𝑧 ) −ℎ 𝑧 ) = 𝑦 ) |
| 91 |
|
hvsubval |
⊢ ( ( ( 𝑣 ·ℎ 𝑧 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑣 ·ℎ 𝑧 ) −ℎ 𝑧 ) = ( ( 𝑣 ·ℎ 𝑧 ) +ℎ ( - 1 ·ℎ 𝑧 ) ) ) |
| 92 |
81 91
|
sylancom |
⊢ ( ( 𝑣 ∈ ℂ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑣 ·ℎ 𝑧 ) −ℎ 𝑧 ) = ( ( 𝑣 ·ℎ 𝑧 ) +ℎ ( - 1 ·ℎ 𝑧 ) ) ) |
| 93 |
|
ax-hvdistr2 |
⊢ ( ( 𝑣 ∈ ℂ ∧ - 1 ∈ ℂ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑣 + - 1 ) ·ℎ 𝑧 ) = ( ( 𝑣 ·ℎ 𝑧 ) +ℎ ( - 1 ·ℎ 𝑧 ) ) ) |
| 94 |
14 93
|
mp3an2 |
⊢ ( ( 𝑣 ∈ ℂ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑣 + - 1 ) ·ℎ 𝑧 ) = ( ( 𝑣 ·ℎ 𝑧 ) +ℎ ( - 1 ·ℎ 𝑧 ) ) ) |
| 95 |
92 94
|
eqtr4d |
⊢ ( ( 𝑣 ∈ ℂ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑣 ·ℎ 𝑧 ) −ℎ 𝑧 ) = ( ( 𝑣 + - 1 ) ·ℎ 𝑧 ) ) |
| 96 |
95
|
ancoms |
⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑣 ∈ ℂ ) → ( ( 𝑣 ·ℎ 𝑧 ) −ℎ 𝑧 ) = ( ( 𝑣 + - 1 ) ·ℎ 𝑧 ) ) |
| 97 |
96
|
adantll |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) → ( ( 𝑣 ·ℎ 𝑧 ) −ℎ 𝑧 ) = ( ( 𝑣 + - 1 ) ·ℎ 𝑧 ) ) |
| 98 |
97
|
adantr |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) ∧ ( 𝑦 +ℎ 𝑧 ) = ( 𝑣 ·ℎ 𝑧 ) ) → ( ( 𝑣 ·ℎ 𝑧 ) −ℎ 𝑧 ) = ( ( 𝑣 + - 1 ) ·ℎ 𝑧 ) ) |
| 99 |
90 98
|
eqtr3d |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) ∧ ( 𝑦 +ℎ 𝑧 ) = ( 𝑣 ·ℎ 𝑧 ) ) → 𝑦 = ( ( 𝑣 + - 1 ) ·ℎ 𝑧 ) ) |
| 100 |
|
oveq1 |
⊢ ( 𝑤 = ( 𝑣 + - 1 ) → ( 𝑤 ·ℎ 𝑧 ) = ( ( 𝑣 + - 1 ) ·ℎ 𝑧 ) ) |
| 101 |
100
|
rspceeqv |
⊢ ( ( ( 𝑣 + - 1 ) ∈ ℂ ∧ 𝑦 = ( ( 𝑣 + - 1 ) ·ℎ 𝑧 ) ) → ∃ 𝑤 ∈ ℂ 𝑦 = ( 𝑤 ·ℎ 𝑧 ) ) |
| 102 |
80 99 101
|
syl2anc |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) ∧ ( 𝑦 +ℎ 𝑧 ) = ( 𝑣 ·ℎ 𝑧 ) ) → ∃ 𝑤 ∈ ℂ 𝑦 = ( 𝑤 ·ℎ 𝑧 ) ) |
| 103 |
102
|
rexlimdva2 |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ∃ 𝑣 ∈ ℂ ( 𝑦 +ℎ 𝑧 ) = ( 𝑣 ·ℎ 𝑧 ) → ∃ 𝑤 ∈ ℂ 𝑦 = ( 𝑤 ·ℎ 𝑧 ) ) ) |
| 104 |
79 103
|
sylbid |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑦 +ℎ 𝑧 ) ∈ ( span ‘ { 𝑧 } ) → ∃ 𝑤 ∈ ℂ 𝑦 = ( 𝑤 ·ℎ 𝑧 ) ) ) |
| 105 |
77 104
|
syld |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = ( span ‘ { 𝑧 } ) → ∃ 𝑤 ∈ ℂ 𝑦 = ( 𝑤 ·ℎ 𝑧 ) ) ) |
| 106 |
|
elspansn |
⊢ ( 𝑧 ∈ ℋ → ( 𝑦 ∈ ( span ‘ { 𝑧 } ) ↔ ∃ 𝑤 ∈ ℂ 𝑦 = ( 𝑤 ·ℎ 𝑧 ) ) ) |
| 107 |
106
|
adantl |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑦 ∈ ( span ‘ { 𝑧 } ) ↔ ∃ 𝑤 ∈ ℂ 𝑦 = ( 𝑤 ·ℎ 𝑧 ) ) ) |
| 108 |
105 107
|
sylibrd |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = ( span ‘ { 𝑧 } ) → 𝑦 ∈ ( span ‘ { 𝑧 } ) ) ) |
| 109 |
108
|
adantr |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑦 ≠ 0ℎ ) → ( ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = ( span ‘ { 𝑧 } ) → 𝑦 ∈ ( span ‘ { 𝑧 } ) ) ) |
| 110 |
|
spansneleq |
⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑦 ≠ 0ℎ ) → ( 𝑦 ∈ ( span ‘ { 𝑧 } ) → ( span ‘ { 𝑦 } ) = ( span ‘ { 𝑧 } ) ) ) |
| 111 |
110
|
adantll |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑦 ≠ 0ℎ ) → ( 𝑦 ∈ ( span ‘ { 𝑧 } ) → ( span ‘ { 𝑦 } ) = ( span ‘ { 𝑧 } ) ) ) |
| 112 |
109 111
|
syld |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑦 ≠ 0ℎ ) → ( ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = ( span ‘ { 𝑧 } ) → ( span ‘ { 𝑦 } ) = ( span ‘ { 𝑧 } ) ) ) |
| 113 |
75 112
|
sylan9r |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑦 ≠ 0ℎ ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) → ( ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = 𝐵 → ( span ‘ { 𝑦 } ) = ( span ‘ { 𝑧 } ) ) ) |
| 114 |
113
|
necon3d |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑦 ≠ 0ℎ ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) → ( ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) → ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ≠ 𝐵 ) ) |
| 115 |
114
|
adantlrr |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝑦 ≠ 0ℎ ∧ 𝑧 ≠ 0ℎ ) ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) → ( ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) → ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ≠ 𝐵 ) ) |
| 116 |
115
|
adantrl |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝑦 ≠ 0ℎ ∧ 𝑧 ≠ 0ℎ ) ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) → ( ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) → ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ≠ 𝐵 ) ) |
| 117 |
116
|
imp |
⊢ ( ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝑦 ≠ 0ℎ ∧ 𝑧 ≠ 0ℎ ) ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) ∧ ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) ) → ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ≠ 𝐵 ) |
| 118 |
|
spanpr |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ⊆ ( span ‘ { 𝑦 , 𝑧 } ) ) |
| 119 |
118
|
adantr |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) → ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ⊆ ( span ‘ { 𝑦 , 𝑧 } ) ) |
| 120 |
|
oveq12 |
⊢ ( ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) → ( 𝐴 ∨ℋ 𝐵 ) = ( ( span ‘ { 𝑦 } ) ∨ℋ ( span ‘ { 𝑧 } ) ) ) |
| 121 |
|
df-pr |
⊢ { 𝑦 , 𝑧 } = ( { 𝑦 } ∪ { 𝑧 } ) |
| 122 |
121
|
fveq2i |
⊢ ( span ‘ { 𝑦 , 𝑧 } ) = ( span ‘ ( { 𝑦 } ∪ { 𝑧 } ) ) |
| 123 |
|
snssi |
⊢ ( 𝑦 ∈ ℋ → { 𝑦 } ⊆ ℋ ) |
| 124 |
|
snssi |
⊢ ( 𝑧 ∈ ℋ → { 𝑧 } ⊆ ℋ ) |
| 125 |
|
spanun |
⊢ ( ( { 𝑦 } ⊆ ℋ ∧ { 𝑧 } ⊆ ℋ ) → ( span ‘ ( { 𝑦 } ∪ { 𝑧 } ) ) = ( ( span ‘ { 𝑦 } ) +ℋ ( span ‘ { 𝑧 } ) ) ) |
| 126 |
123 124 125
|
syl2an |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( span ‘ ( { 𝑦 } ∪ { 𝑧 } ) ) = ( ( span ‘ { 𝑦 } ) +ℋ ( span ‘ { 𝑧 } ) ) ) |
| 127 |
122 126
|
eqtrid |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( span ‘ { 𝑦 , 𝑧 } ) = ( ( span ‘ { 𝑦 } ) +ℋ ( span ‘ { 𝑧 } ) ) ) |
| 128 |
|
spansnch |
⊢ ( 𝑦 ∈ ℋ → ( span ‘ { 𝑦 } ) ∈ Cℋ ) |
| 129 |
|
spansnj |
⊢ ( ( ( span ‘ { 𝑦 } ) ∈ Cℋ ∧ 𝑧 ∈ ℋ ) → ( ( span ‘ { 𝑦 } ) +ℋ ( span ‘ { 𝑧 } ) ) = ( ( span ‘ { 𝑦 } ) ∨ℋ ( span ‘ { 𝑧 } ) ) ) |
| 130 |
128 129
|
sylan |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( span ‘ { 𝑦 } ) +ℋ ( span ‘ { 𝑧 } ) ) = ( ( span ‘ { 𝑦 } ) ∨ℋ ( span ‘ { 𝑧 } ) ) ) |
| 131 |
127 130
|
eqtr2d |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( span ‘ { 𝑦 } ) ∨ℋ ( span ‘ { 𝑧 } ) ) = ( span ‘ { 𝑦 , 𝑧 } ) ) |
| 132 |
120 131
|
sylan9eqr |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) → ( 𝐴 ∨ℋ 𝐵 ) = ( span ‘ { 𝑦 , 𝑧 } ) ) |
| 133 |
119 132
|
sseqtrrd |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) → ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) |
| 134 |
133
|
adantlr |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝑦 ≠ 0ℎ ∧ 𝑧 ≠ 0ℎ ) ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) → ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) |
| 135 |
134
|
adantr |
⊢ ( ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝑦 ≠ 0ℎ ∧ 𝑧 ≠ 0ℎ ) ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) ∧ ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) ) → ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) |
| 136 |
|
neeq1 |
⊢ ( 𝑥 = ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) → ( 𝑥 ≠ 𝐴 ↔ ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ≠ 𝐴 ) ) |
| 137 |
|
neeq1 |
⊢ ( 𝑥 = ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) → ( 𝑥 ≠ 𝐵 ↔ ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ≠ 𝐵 ) ) |
| 138 |
|
sseq1 |
⊢ ( 𝑥 = ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) → ( 𝑥 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ↔ ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
| 139 |
136 137 138
|
3anbi123d |
⊢ ( 𝑥 = ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) → ( ( 𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ↔ ( ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ≠ 𝐴 ∧ ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ≠ 𝐵 ∧ ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) |
| 140 |
139
|
rspcev |
⊢ ( ( ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ∈ HAtoms ∧ ( ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ≠ 𝐴 ∧ ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ≠ 𝐵 ∧ ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) → ∃ 𝑥 ∈ HAtoms ( 𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
| 141 |
27 73 117 135 140
|
syl13anc |
⊢ ( ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝑦 ≠ 0ℎ ∧ 𝑧 ≠ 0ℎ ) ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) ∧ ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) ) → ∃ 𝑥 ∈ HAtoms ( 𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
| 142 |
141
|
ex |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝑦 ≠ 0ℎ ∧ 𝑧 ≠ 0ℎ ) ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) → ( ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) → ∃ 𝑥 ∈ HAtoms ( 𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) |
| 143 |
8 142
|
sylbid |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝑦 ≠ 0ℎ ∧ 𝑧 ≠ 0ℎ ) ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) → ( 𝐴 ≠ 𝐵 → ∃ 𝑥 ∈ HAtoms ( 𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) |
| 144 |
143
|
expl |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( ( 𝑦 ≠ 0ℎ ∧ 𝑧 ≠ 0ℎ ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) → ( 𝐴 ≠ 𝐵 → ∃ 𝑥 ∈ HAtoms ( 𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) ) |
| 145 |
4 144
|
biimtrid |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( ( 𝑦 ≠ 0ℎ ∧ 𝐴 = ( span ‘ { 𝑦 } ) ) ∧ ( 𝑧 ≠ 0ℎ ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) → ( 𝐴 ≠ 𝐵 → ∃ 𝑥 ∈ HAtoms ( 𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) ) |
| 146 |
145
|
rexlimivv |
⊢ ( ∃ 𝑦 ∈ ℋ ∃ 𝑧 ∈ ℋ ( ( 𝑦 ≠ 0ℎ ∧ 𝐴 = ( span ‘ { 𝑦 } ) ) ∧ ( 𝑧 ≠ 0ℎ ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) → ( 𝐴 ≠ 𝐵 → ∃ 𝑥 ∈ HAtoms ( 𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) |
| 147 |
3 146
|
sylbir |
⊢ ( ( ∃ 𝑦 ∈ ℋ ( 𝑦 ≠ 0ℎ ∧ 𝐴 = ( span ‘ { 𝑦 } ) ) ∧ ∃ 𝑧 ∈ ℋ ( 𝑧 ≠ 0ℎ ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) → ( 𝐴 ≠ 𝐵 → ∃ 𝑥 ∈ HAtoms ( 𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) |
| 148 |
1 2 147
|
syl2anb |
⊢ ( ( 𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms ) → ( 𝐴 ≠ 𝐵 → ∃ 𝑥 ∈ HAtoms ( 𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) |
| 149 |
148
|
3impia |
⊢ ( ( 𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms ∧ 𝐴 ≠ 𝐵 ) → ∃ 𝑥 ∈ HAtoms ( 𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) |