Step |
Hyp |
Ref |
Expression |
1 |
|
atom1d |
⊢ ( 𝐴 ∈ HAtoms ↔ ∃ 𝑦 ∈ ℋ ( 𝑦 ≠ 0ℎ ∧ 𝐴 = ( span ‘ { 𝑦 } ) ) ) |
2 |
|
atom1d |
⊢ ( 𝐵 ∈ HAtoms ↔ ∃ 𝑧 ∈ ℋ ( 𝑧 ≠ 0ℎ ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) |
3 |
|
reeanv |
⊢ ( ∃ 𝑦 ∈ ℋ ∃ 𝑧 ∈ ℋ ( ( 𝑦 ≠ 0ℎ ∧ 𝐴 = ( span ‘ { 𝑦 } ) ) ∧ ( 𝑧 ≠ 0ℎ ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) ↔ ( ∃ 𝑦 ∈ ℋ ( 𝑦 ≠ 0ℎ ∧ 𝐴 = ( span ‘ { 𝑦 } ) ) ∧ ∃ 𝑧 ∈ ℋ ( 𝑧 ≠ 0ℎ ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) ) |
4 |
|
an4 |
⊢ ( ( ( 𝑦 ≠ 0ℎ ∧ 𝐴 = ( span ‘ { 𝑦 } ) ) ∧ ( 𝑧 ≠ 0ℎ ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) ↔ ( ( 𝑦 ≠ 0ℎ ∧ 𝑧 ≠ 0ℎ ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) ) |
5 |
|
neeq1 |
⊢ ( 𝐴 = ( span ‘ { 𝑦 } ) → ( 𝐴 ≠ 𝐵 ↔ ( span ‘ { 𝑦 } ) ≠ 𝐵 ) ) |
6 |
|
neeq2 |
⊢ ( 𝐵 = ( span ‘ { 𝑧 } ) → ( ( span ‘ { 𝑦 } ) ≠ 𝐵 ↔ ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) ) ) |
7 |
5 6
|
sylan9bb |
⊢ ( ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) → ( 𝐴 ≠ 𝐵 ↔ ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) ) ) |
8 |
7
|
adantl |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝑦 ≠ 0ℎ ∧ 𝑧 ≠ 0ℎ ) ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) → ( 𝐴 ≠ 𝐵 ↔ ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) ) ) |
9 |
|
hvaddcl |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑦 +ℎ 𝑧 ) ∈ ℋ ) |
10 |
9
|
adantr |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) ) → ( 𝑦 +ℎ 𝑧 ) ∈ ℋ ) |
11 |
|
hvaddeq0 |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑦 +ℎ 𝑧 ) = 0ℎ ↔ 𝑦 = ( - 1 ·ℎ 𝑧 ) ) ) |
12 |
|
sneq |
⊢ ( 𝑦 = ( - 1 ·ℎ 𝑧 ) → { 𝑦 } = { ( - 1 ·ℎ 𝑧 ) } ) |
13 |
12
|
fveq2d |
⊢ ( 𝑦 = ( - 1 ·ℎ 𝑧 ) → ( span ‘ { 𝑦 } ) = ( span ‘ { ( - 1 ·ℎ 𝑧 ) } ) ) |
14 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
15 |
|
neg1ne0 |
⊢ - 1 ≠ 0 |
16 |
|
spansncol |
⊢ ( ( 𝑧 ∈ ℋ ∧ - 1 ∈ ℂ ∧ - 1 ≠ 0 ) → ( span ‘ { ( - 1 ·ℎ 𝑧 ) } ) = ( span ‘ { 𝑧 } ) ) |
17 |
14 15 16
|
mp3an23 |
⊢ ( 𝑧 ∈ ℋ → ( span ‘ { ( - 1 ·ℎ 𝑧 ) } ) = ( span ‘ { 𝑧 } ) ) |
18 |
13 17
|
sylan9eqr |
⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑦 = ( - 1 ·ℎ 𝑧 ) ) → ( span ‘ { 𝑦 } ) = ( span ‘ { 𝑧 } ) ) |
19 |
18
|
ex |
⊢ ( 𝑧 ∈ ℋ → ( 𝑦 = ( - 1 ·ℎ 𝑧 ) → ( span ‘ { 𝑦 } ) = ( span ‘ { 𝑧 } ) ) ) |
20 |
19
|
adantl |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑦 = ( - 1 ·ℎ 𝑧 ) → ( span ‘ { 𝑦 } ) = ( span ‘ { 𝑧 } ) ) ) |
21 |
11 20
|
sylbid |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑦 +ℎ 𝑧 ) = 0ℎ → ( span ‘ { 𝑦 } ) = ( span ‘ { 𝑧 } ) ) ) |
22 |
21
|
necon3d |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) → ( 𝑦 +ℎ 𝑧 ) ≠ 0ℎ ) ) |
23 |
22
|
imp |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) ) → ( 𝑦 +ℎ 𝑧 ) ≠ 0ℎ ) |
24 |
|
spansna |
⊢ ( ( ( 𝑦 +ℎ 𝑧 ) ∈ ℋ ∧ ( 𝑦 +ℎ 𝑧 ) ≠ 0ℎ ) → ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ∈ HAtoms ) |
25 |
10 23 24
|
syl2anc |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) ) → ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ∈ HAtoms ) |
26 |
25
|
adantlr |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝑦 ≠ 0ℎ ∧ 𝑧 ≠ 0ℎ ) ) ∧ ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) ) → ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ∈ HAtoms ) |
27 |
26
|
adantlr |
⊢ ( ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝑦 ≠ 0ℎ ∧ 𝑧 ≠ 0ℎ ) ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) ∧ ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) ) → ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ∈ HAtoms ) |
28 |
|
eqeq2 |
⊢ ( 𝐴 = ( span ‘ { 𝑦 } ) → ( ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = 𝐴 ↔ ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = ( span ‘ { 𝑦 } ) ) ) |
29 |
28
|
biimpd |
⊢ ( 𝐴 = ( span ‘ { 𝑦 } ) → ( ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = 𝐴 → ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = ( span ‘ { 𝑦 } ) ) ) |
30 |
|
spansneleqi |
⊢ ( ( 𝑦 +ℎ 𝑧 ) ∈ ℋ → ( ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = ( span ‘ { 𝑦 } ) → ( 𝑦 +ℎ 𝑧 ) ∈ ( span ‘ { 𝑦 } ) ) ) |
31 |
9 30
|
syl |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = ( span ‘ { 𝑦 } ) → ( 𝑦 +ℎ 𝑧 ) ∈ ( span ‘ { 𝑦 } ) ) ) |
32 |
|
elspansn |
⊢ ( 𝑦 ∈ ℋ → ( ( 𝑦 +ℎ 𝑧 ) ∈ ( span ‘ { 𝑦 } ) ↔ ∃ 𝑣 ∈ ℂ ( 𝑦 +ℎ 𝑧 ) = ( 𝑣 ·ℎ 𝑦 ) ) ) |
33 |
32
|
adantr |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑦 +ℎ 𝑧 ) ∈ ( span ‘ { 𝑦 } ) ↔ ∃ 𝑣 ∈ ℂ ( 𝑦 +ℎ 𝑧 ) = ( 𝑣 ·ℎ 𝑦 ) ) ) |
34 |
|
addcl |
⊢ ( ( 𝑣 ∈ ℂ ∧ - 1 ∈ ℂ ) → ( 𝑣 + - 1 ) ∈ ℂ ) |
35 |
14 34
|
mpan2 |
⊢ ( 𝑣 ∈ ℂ → ( 𝑣 + - 1 ) ∈ ℂ ) |
36 |
35
|
ad2antlr |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) ∧ ( 𝑦 +ℎ 𝑧 ) = ( 𝑣 ·ℎ 𝑦 ) ) → ( 𝑣 + - 1 ) ∈ ℂ ) |
37 |
|
hvmulcl |
⊢ ( ( 𝑣 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑣 ·ℎ 𝑦 ) ∈ ℋ ) |
38 |
37
|
ancoms |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑣 ∈ ℂ ) → ( 𝑣 ·ℎ 𝑦 ) ∈ ℋ ) |
39 |
38
|
adantlr |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) → ( 𝑣 ·ℎ 𝑦 ) ∈ ℋ ) |
40 |
|
simpll |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) → 𝑦 ∈ ℋ ) |
41 |
|
simplr |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) → 𝑧 ∈ ℋ ) |
42 |
|
hvsubadd |
⊢ ( ( ( 𝑣 ·ℎ 𝑦 ) ∈ ℋ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( ( 𝑣 ·ℎ 𝑦 ) −ℎ 𝑦 ) = 𝑧 ↔ ( 𝑦 +ℎ 𝑧 ) = ( 𝑣 ·ℎ 𝑦 ) ) ) |
43 |
39 40 41 42
|
syl3anc |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) → ( ( ( 𝑣 ·ℎ 𝑦 ) −ℎ 𝑦 ) = 𝑧 ↔ ( 𝑦 +ℎ 𝑧 ) = ( 𝑣 ·ℎ 𝑦 ) ) ) |
44 |
43
|
biimpar |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) ∧ ( 𝑦 +ℎ 𝑧 ) = ( 𝑣 ·ℎ 𝑦 ) ) → ( ( 𝑣 ·ℎ 𝑦 ) −ℎ 𝑦 ) = 𝑧 ) |
45 |
|
hvsubval |
⊢ ( ( ( 𝑣 ·ℎ 𝑦 ) ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑣 ·ℎ 𝑦 ) −ℎ 𝑦 ) = ( ( 𝑣 ·ℎ 𝑦 ) +ℎ ( - 1 ·ℎ 𝑦 ) ) ) |
46 |
37 45
|
sylancom |
⊢ ( ( 𝑣 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑣 ·ℎ 𝑦 ) −ℎ 𝑦 ) = ( ( 𝑣 ·ℎ 𝑦 ) +ℎ ( - 1 ·ℎ 𝑦 ) ) ) |
47 |
|
ax-hvdistr2 |
⊢ ( ( 𝑣 ∈ ℂ ∧ - 1 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑣 + - 1 ) ·ℎ 𝑦 ) = ( ( 𝑣 ·ℎ 𝑦 ) +ℎ ( - 1 ·ℎ 𝑦 ) ) ) |
48 |
14 47
|
mp3an2 |
⊢ ( ( 𝑣 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑣 + - 1 ) ·ℎ 𝑦 ) = ( ( 𝑣 ·ℎ 𝑦 ) +ℎ ( - 1 ·ℎ 𝑦 ) ) ) |
49 |
46 48
|
eqtr4d |
⊢ ( ( 𝑣 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑣 ·ℎ 𝑦 ) −ℎ 𝑦 ) = ( ( 𝑣 + - 1 ) ·ℎ 𝑦 ) ) |
50 |
49
|
ancoms |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑣 ∈ ℂ ) → ( ( 𝑣 ·ℎ 𝑦 ) −ℎ 𝑦 ) = ( ( 𝑣 + - 1 ) ·ℎ 𝑦 ) ) |
51 |
50
|
adantlr |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) → ( ( 𝑣 ·ℎ 𝑦 ) −ℎ 𝑦 ) = ( ( 𝑣 + - 1 ) ·ℎ 𝑦 ) ) |
52 |
51
|
adantr |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) ∧ ( 𝑦 +ℎ 𝑧 ) = ( 𝑣 ·ℎ 𝑦 ) ) → ( ( 𝑣 ·ℎ 𝑦 ) −ℎ 𝑦 ) = ( ( 𝑣 + - 1 ) ·ℎ 𝑦 ) ) |
53 |
44 52
|
eqtr3d |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) ∧ ( 𝑦 +ℎ 𝑧 ) = ( 𝑣 ·ℎ 𝑦 ) ) → 𝑧 = ( ( 𝑣 + - 1 ) ·ℎ 𝑦 ) ) |
54 |
|
oveq1 |
⊢ ( 𝑤 = ( 𝑣 + - 1 ) → ( 𝑤 ·ℎ 𝑦 ) = ( ( 𝑣 + - 1 ) ·ℎ 𝑦 ) ) |
55 |
54
|
rspceeqv |
⊢ ( ( ( 𝑣 + - 1 ) ∈ ℂ ∧ 𝑧 = ( ( 𝑣 + - 1 ) ·ℎ 𝑦 ) ) → ∃ 𝑤 ∈ ℂ 𝑧 = ( 𝑤 ·ℎ 𝑦 ) ) |
56 |
36 53 55
|
syl2anc |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) ∧ ( 𝑦 +ℎ 𝑧 ) = ( 𝑣 ·ℎ 𝑦 ) ) → ∃ 𝑤 ∈ ℂ 𝑧 = ( 𝑤 ·ℎ 𝑦 ) ) |
57 |
56
|
rexlimdva2 |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ∃ 𝑣 ∈ ℂ ( 𝑦 +ℎ 𝑧 ) = ( 𝑣 ·ℎ 𝑦 ) → ∃ 𝑤 ∈ ℂ 𝑧 = ( 𝑤 ·ℎ 𝑦 ) ) ) |
58 |
33 57
|
sylbid |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑦 +ℎ 𝑧 ) ∈ ( span ‘ { 𝑦 } ) → ∃ 𝑤 ∈ ℂ 𝑧 = ( 𝑤 ·ℎ 𝑦 ) ) ) |
59 |
31 58
|
syld |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = ( span ‘ { 𝑦 } ) → ∃ 𝑤 ∈ ℂ 𝑧 = ( 𝑤 ·ℎ 𝑦 ) ) ) |
60 |
|
elspansn |
⊢ ( 𝑦 ∈ ℋ → ( 𝑧 ∈ ( span ‘ { 𝑦 } ) ↔ ∃ 𝑤 ∈ ℂ 𝑧 = ( 𝑤 ·ℎ 𝑦 ) ) ) |
61 |
60
|
adantr |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑧 ∈ ( span ‘ { 𝑦 } ) ↔ ∃ 𝑤 ∈ ℂ 𝑧 = ( 𝑤 ·ℎ 𝑦 ) ) ) |
62 |
59 61
|
sylibrd |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = ( span ‘ { 𝑦 } ) → 𝑧 ∈ ( span ‘ { 𝑦 } ) ) ) |
63 |
62
|
adantr |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑧 ≠ 0ℎ ) → ( ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = ( span ‘ { 𝑦 } ) → 𝑧 ∈ ( span ‘ { 𝑦 } ) ) ) |
64 |
|
spansneleq |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ≠ 0ℎ ) → ( 𝑧 ∈ ( span ‘ { 𝑦 } ) → ( span ‘ { 𝑧 } ) = ( span ‘ { 𝑦 } ) ) ) |
65 |
|
eqcom |
⊢ ( ( span ‘ { 𝑧 } ) = ( span ‘ { 𝑦 } ) ↔ ( span ‘ { 𝑦 } ) = ( span ‘ { 𝑧 } ) ) |
66 |
64 65
|
syl6ib |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ≠ 0ℎ ) → ( 𝑧 ∈ ( span ‘ { 𝑦 } ) → ( span ‘ { 𝑦 } ) = ( span ‘ { 𝑧 } ) ) ) |
67 |
66
|
adantlr |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑧 ≠ 0ℎ ) → ( 𝑧 ∈ ( span ‘ { 𝑦 } ) → ( span ‘ { 𝑦 } ) = ( span ‘ { 𝑧 } ) ) ) |
68 |
63 67
|
syld |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑧 ≠ 0ℎ ) → ( ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = ( span ‘ { 𝑦 } ) → ( span ‘ { 𝑦 } ) = ( span ‘ { 𝑧 } ) ) ) |
69 |
29 68
|
sylan9r |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑧 ≠ 0ℎ ) ∧ 𝐴 = ( span ‘ { 𝑦 } ) ) → ( ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = 𝐴 → ( span ‘ { 𝑦 } ) = ( span ‘ { 𝑧 } ) ) ) |
70 |
69
|
necon3d |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑧 ≠ 0ℎ ) ∧ 𝐴 = ( span ‘ { 𝑦 } ) ) → ( ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) → ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ≠ 𝐴 ) ) |
71 |
70
|
adantlrl |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝑦 ≠ 0ℎ ∧ 𝑧 ≠ 0ℎ ) ) ∧ 𝐴 = ( span ‘ { 𝑦 } ) ) → ( ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) → ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ≠ 𝐴 ) ) |
72 |
71
|
adantrr |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝑦 ≠ 0ℎ ∧ 𝑧 ≠ 0ℎ ) ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) → ( ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) → ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ≠ 𝐴 ) ) |
73 |
72
|
imp |
⊢ ( ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝑦 ≠ 0ℎ ∧ 𝑧 ≠ 0ℎ ) ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) ∧ ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) ) → ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ≠ 𝐴 ) |
74 |
|
eqeq2 |
⊢ ( 𝐵 = ( span ‘ { 𝑧 } ) → ( ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = 𝐵 ↔ ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = ( span ‘ { 𝑧 } ) ) ) |
75 |
74
|
biimpd |
⊢ ( 𝐵 = ( span ‘ { 𝑧 } ) → ( ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = 𝐵 → ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = ( span ‘ { 𝑧 } ) ) ) |
76 |
|
spansneleqi |
⊢ ( ( 𝑦 +ℎ 𝑧 ) ∈ ℋ → ( ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = ( span ‘ { 𝑧 } ) → ( 𝑦 +ℎ 𝑧 ) ∈ ( span ‘ { 𝑧 } ) ) ) |
77 |
9 76
|
syl |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = ( span ‘ { 𝑧 } ) → ( 𝑦 +ℎ 𝑧 ) ∈ ( span ‘ { 𝑧 } ) ) ) |
78 |
|
elspansn |
⊢ ( 𝑧 ∈ ℋ → ( ( 𝑦 +ℎ 𝑧 ) ∈ ( span ‘ { 𝑧 } ) ↔ ∃ 𝑣 ∈ ℂ ( 𝑦 +ℎ 𝑧 ) = ( 𝑣 ·ℎ 𝑧 ) ) ) |
79 |
78
|
adantl |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑦 +ℎ 𝑧 ) ∈ ( span ‘ { 𝑧 } ) ↔ ∃ 𝑣 ∈ ℂ ( 𝑦 +ℎ 𝑧 ) = ( 𝑣 ·ℎ 𝑧 ) ) ) |
80 |
35
|
ad2antlr |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) ∧ ( 𝑦 +ℎ 𝑧 ) = ( 𝑣 ·ℎ 𝑧 ) ) → ( 𝑣 + - 1 ) ∈ ℂ ) |
81 |
|
hvmulcl |
⊢ ( ( 𝑣 ∈ ℂ ∧ 𝑧 ∈ ℋ ) → ( 𝑣 ·ℎ 𝑧 ) ∈ ℋ ) |
82 |
81
|
ancoms |
⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑣 ∈ ℂ ) → ( 𝑣 ·ℎ 𝑧 ) ∈ ℋ ) |
83 |
82
|
adantll |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) → ( 𝑣 ·ℎ 𝑧 ) ∈ ℋ ) |
84 |
|
hvsubadd |
⊢ ( ( ( 𝑣 ·ℎ 𝑧 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( 𝑣 ·ℎ 𝑧 ) −ℎ 𝑧 ) = 𝑦 ↔ ( 𝑧 +ℎ 𝑦 ) = ( 𝑣 ·ℎ 𝑧 ) ) ) |
85 |
83 41 40 84
|
syl3anc |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) → ( ( ( 𝑣 ·ℎ 𝑧 ) −ℎ 𝑧 ) = 𝑦 ↔ ( 𝑧 +ℎ 𝑦 ) = ( 𝑣 ·ℎ 𝑧 ) ) ) |
86 |
|
ax-hvcom |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑦 +ℎ 𝑧 ) = ( 𝑧 +ℎ 𝑦 ) ) |
87 |
86
|
adantr |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) → ( 𝑦 +ℎ 𝑧 ) = ( 𝑧 +ℎ 𝑦 ) ) |
88 |
87
|
eqeq1d |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) → ( ( 𝑦 +ℎ 𝑧 ) = ( 𝑣 ·ℎ 𝑧 ) ↔ ( 𝑧 +ℎ 𝑦 ) = ( 𝑣 ·ℎ 𝑧 ) ) ) |
89 |
85 88
|
bitr4d |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) → ( ( ( 𝑣 ·ℎ 𝑧 ) −ℎ 𝑧 ) = 𝑦 ↔ ( 𝑦 +ℎ 𝑧 ) = ( 𝑣 ·ℎ 𝑧 ) ) ) |
90 |
89
|
biimpar |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) ∧ ( 𝑦 +ℎ 𝑧 ) = ( 𝑣 ·ℎ 𝑧 ) ) → ( ( 𝑣 ·ℎ 𝑧 ) −ℎ 𝑧 ) = 𝑦 ) |
91 |
|
hvsubval |
⊢ ( ( ( 𝑣 ·ℎ 𝑧 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑣 ·ℎ 𝑧 ) −ℎ 𝑧 ) = ( ( 𝑣 ·ℎ 𝑧 ) +ℎ ( - 1 ·ℎ 𝑧 ) ) ) |
92 |
81 91
|
sylancom |
⊢ ( ( 𝑣 ∈ ℂ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑣 ·ℎ 𝑧 ) −ℎ 𝑧 ) = ( ( 𝑣 ·ℎ 𝑧 ) +ℎ ( - 1 ·ℎ 𝑧 ) ) ) |
93 |
|
ax-hvdistr2 |
⊢ ( ( 𝑣 ∈ ℂ ∧ - 1 ∈ ℂ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑣 + - 1 ) ·ℎ 𝑧 ) = ( ( 𝑣 ·ℎ 𝑧 ) +ℎ ( - 1 ·ℎ 𝑧 ) ) ) |
94 |
14 93
|
mp3an2 |
⊢ ( ( 𝑣 ∈ ℂ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑣 + - 1 ) ·ℎ 𝑧 ) = ( ( 𝑣 ·ℎ 𝑧 ) +ℎ ( - 1 ·ℎ 𝑧 ) ) ) |
95 |
92 94
|
eqtr4d |
⊢ ( ( 𝑣 ∈ ℂ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑣 ·ℎ 𝑧 ) −ℎ 𝑧 ) = ( ( 𝑣 + - 1 ) ·ℎ 𝑧 ) ) |
96 |
95
|
ancoms |
⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑣 ∈ ℂ ) → ( ( 𝑣 ·ℎ 𝑧 ) −ℎ 𝑧 ) = ( ( 𝑣 + - 1 ) ·ℎ 𝑧 ) ) |
97 |
96
|
adantll |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) → ( ( 𝑣 ·ℎ 𝑧 ) −ℎ 𝑧 ) = ( ( 𝑣 + - 1 ) ·ℎ 𝑧 ) ) |
98 |
97
|
adantr |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) ∧ ( 𝑦 +ℎ 𝑧 ) = ( 𝑣 ·ℎ 𝑧 ) ) → ( ( 𝑣 ·ℎ 𝑧 ) −ℎ 𝑧 ) = ( ( 𝑣 + - 1 ) ·ℎ 𝑧 ) ) |
99 |
90 98
|
eqtr3d |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) ∧ ( 𝑦 +ℎ 𝑧 ) = ( 𝑣 ·ℎ 𝑧 ) ) → 𝑦 = ( ( 𝑣 + - 1 ) ·ℎ 𝑧 ) ) |
100 |
|
oveq1 |
⊢ ( 𝑤 = ( 𝑣 + - 1 ) → ( 𝑤 ·ℎ 𝑧 ) = ( ( 𝑣 + - 1 ) ·ℎ 𝑧 ) ) |
101 |
100
|
rspceeqv |
⊢ ( ( ( 𝑣 + - 1 ) ∈ ℂ ∧ 𝑦 = ( ( 𝑣 + - 1 ) ·ℎ 𝑧 ) ) → ∃ 𝑤 ∈ ℂ 𝑦 = ( 𝑤 ·ℎ 𝑧 ) ) |
102 |
80 99 101
|
syl2anc |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) ∧ ( 𝑦 +ℎ 𝑧 ) = ( 𝑣 ·ℎ 𝑧 ) ) → ∃ 𝑤 ∈ ℂ 𝑦 = ( 𝑤 ·ℎ 𝑧 ) ) |
103 |
102
|
rexlimdva2 |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ∃ 𝑣 ∈ ℂ ( 𝑦 +ℎ 𝑧 ) = ( 𝑣 ·ℎ 𝑧 ) → ∃ 𝑤 ∈ ℂ 𝑦 = ( 𝑤 ·ℎ 𝑧 ) ) ) |
104 |
79 103
|
sylbid |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑦 +ℎ 𝑧 ) ∈ ( span ‘ { 𝑧 } ) → ∃ 𝑤 ∈ ℂ 𝑦 = ( 𝑤 ·ℎ 𝑧 ) ) ) |
105 |
77 104
|
syld |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = ( span ‘ { 𝑧 } ) → ∃ 𝑤 ∈ ℂ 𝑦 = ( 𝑤 ·ℎ 𝑧 ) ) ) |
106 |
|
elspansn |
⊢ ( 𝑧 ∈ ℋ → ( 𝑦 ∈ ( span ‘ { 𝑧 } ) ↔ ∃ 𝑤 ∈ ℂ 𝑦 = ( 𝑤 ·ℎ 𝑧 ) ) ) |
107 |
106
|
adantl |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑦 ∈ ( span ‘ { 𝑧 } ) ↔ ∃ 𝑤 ∈ ℂ 𝑦 = ( 𝑤 ·ℎ 𝑧 ) ) ) |
108 |
105 107
|
sylibrd |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = ( span ‘ { 𝑧 } ) → 𝑦 ∈ ( span ‘ { 𝑧 } ) ) ) |
109 |
108
|
adantr |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑦 ≠ 0ℎ ) → ( ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = ( span ‘ { 𝑧 } ) → 𝑦 ∈ ( span ‘ { 𝑧 } ) ) ) |
110 |
|
spansneleq |
⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑦 ≠ 0ℎ ) → ( 𝑦 ∈ ( span ‘ { 𝑧 } ) → ( span ‘ { 𝑦 } ) = ( span ‘ { 𝑧 } ) ) ) |
111 |
110
|
adantll |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑦 ≠ 0ℎ ) → ( 𝑦 ∈ ( span ‘ { 𝑧 } ) → ( span ‘ { 𝑦 } ) = ( span ‘ { 𝑧 } ) ) ) |
112 |
109 111
|
syld |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑦 ≠ 0ℎ ) → ( ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = ( span ‘ { 𝑧 } ) → ( span ‘ { 𝑦 } ) = ( span ‘ { 𝑧 } ) ) ) |
113 |
75 112
|
sylan9r |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑦 ≠ 0ℎ ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) → ( ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) = 𝐵 → ( span ‘ { 𝑦 } ) = ( span ‘ { 𝑧 } ) ) ) |
114 |
113
|
necon3d |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑦 ≠ 0ℎ ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) → ( ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) → ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ≠ 𝐵 ) ) |
115 |
114
|
adantlrr |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝑦 ≠ 0ℎ ∧ 𝑧 ≠ 0ℎ ) ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) → ( ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) → ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ≠ 𝐵 ) ) |
116 |
115
|
adantrl |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝑦 ≠ 0ℎ ∧ 𝑧 ≠ 0ℎ ) ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) → ( ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) → ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ≠ 𝐵 ) ) |
117 |
116
|
imp |
⊢ ( ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝑦 ≠ 0ℎ ∧ 𝑧 ≠ 0ℎ ) ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) ∧ ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) ) → ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ≠ 𝐵 ) |
118 |
|
spanpr |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ⊆ ( span ‘ { 𝑦 , 𝑧 } ) ) |
119 |
118
|
adantr |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) → ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ⊆ ( span ‘ { 𝑦 , 𝑧 } ) ) |
120 |
|
oveq12 |
⊢ ( ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) → ( 𝐴 ∨ℋ 𝐵 ) = ( ( span ‘ { 𝑦 } ) ∨ℋ ( span ‘ { 𝑧 } ) ) ) |
121 |
|
df-pr |
⊢ { 𝑦 , 𝑧 } = ( { 𝑦 } ∪ { 𝑧 } ) |
122 |
121
|
fveq2i |
⊢ ( span ‘ { 𝑦 , 𝑧 } ) = ( span ‘ ( { 𝑦 } ∪ { 𝑧 } ) ) |
123 |
|
snssi |
⊢ ( 𝑦 ∈ ℋ → { 𝑦 } ⊆ ℋ ) |
124 |
|
snssi |
⊢ ( 𝑧 ∈ ℋ → { 𝑧 } ⊆ ℋ ) |
125 |
|
spanun |
⊢ ( ( { 𝑦 } ⊆ ℋ ∧ { 𝑧 } ⊆ ℋ ) → ( span ‘ ( { 𝑦 } ∪ { 𝑧 } ) ) = ( ( span ‘ { 𝑦 } ) +ℋ ( span ‘ { 𝑧 } ) ) ) |
126 |
123 124 125
|
syl2an |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( span ‘ ( { 𝑦 } ∪ { 𝑧 } ) ) = ( ( span ‘ { 𝑦 } ) +ℋ ( span ‘ { 𝑧 } ) ) ) |
127 |
122 126
|
syl5eq |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( span ‘ { 𝑦 , 𝑧 } ) = ( ( span ‘ { 𝑦 } ) +ℋ ( span ‘ { 𝑧 } ) ) ) |
128 |
|
spansnch |
⊢ ( 𝑦 ∈ ℋ → ( span ‘ { 𝑦 } ) ∈ Cℋ ) |
129 |
|
spansnj |
⊢ ( ( ( span ‘ { 𝑦 } ) ∈ Cℋ ∧ 𝑧 ∈ ℋ ) → ( ( span ‘ { 𝑦 } ) +ℋ ( span ‘ { 𝑧 } ) ) = ( ( span ‘ { 𝑦 } ) ∨ℋ ( span ‘ { 𝑧 } ) ) ) |
130 |
128 129
|
sylan |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( span ‘ { 𝑦 } ) +ℋ ( span ‘ { 𝑧 } ) ) = ( ( span ‘ { 𝑦 } ) ∨ℋ ( span ‘ { 𝑧 } ) ) ) |
131 |
127 130
|
eqtr2d |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( span ‘ { 𝑦 } ) ∨ℋ ( span ‘ { 𝑧 } ) ) = ( span ‘ { 𝑦 , 𝑧 } ) ) |
132 |
120 131
|
sylan9eqr |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) → ( 𝐴 ∨ℋ 𝐵 ) = ( span ‘ { 𝑦 , 𝑧 } ) ) |
133 |
119 132
|
sseqtrrd |
⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) → ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) |
134 |
133
|
adantlr |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝑦 ≠ 0ℎ ∧ 𝑧 ≠ 0ℎ ) ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) → ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) |
135 |
134
|
adantr |
⊢ ( ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝑦 ≠ 0ℎ ∧ 𝑧 ≠ 0ℎ ) ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) ∧ ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) ) → ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) |
136 |
|
neeq1 |
⊢ ( 𝑥 = ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) → ( 𝑥 ≠ 𝐴 ↔ ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ≠ 𝐴 ) ) |
137 |
|
neeq1 |
⊢ ( 𝑥 = ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) → ( 𝑥 ≠ 𝐵 ↔ ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ≠ 𝐵 ) ) |
138 |
|
sseq1 |
⊢ ( 𝑥 = ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) → ( 𝑥 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ↔ ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
139 |
136 137 138
|
3anbi123d |
⊢ ( 𝑥 = ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) → ( ( 𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ↔ ( ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ≠ 𝐴 ∧ ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ≠ 𝐵 ∧ ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) |
140 |
139
|
rspcev |
⊢ ( ( ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ∈ HAtoms ∧ ( ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ≠ 𝐴 ∧ ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ≠ 𝐵 ∧ ( span ‘ { ( 𝑦 +ℎ 𝑧 ) } ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) → ∃ 𝑥 ∈ HAtoms ( 𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
141 |
27 73 117 135 140
|
syl13anc |
⊢ ( ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝑦 ≠ 0ℎ ∧ 𝑧 ≠ 0ℎ ) ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) ∧ ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) ) → ∃ 𝑥 ∈ HAtoms ( 𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
142 |
141
|
ex |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝑦 ≠ 0ℎ ∧ 𝑧 ≠ 0ℎ ) ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) → ( ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) → ∃ 𝑥 ∈ HAtoms ( 𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) |
143 |
8 142
|
sylbid |
⊢ ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝑦 ≠ 0ℎ ∧ 𝑧 ≠ 0ℎ ) ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) → ( 𝐴 ≠ 𝐵 → ∃ 𝑥 ∈ HAtoms ( 𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) |
144 |
143
|
expl |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( ( 𝑦 ≠ 0ℎ ∧ 𝑧 ≠ 0ℎ ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) → ( 𝐴 ≠ 𝐵 → ∃ 𝑥 ∈ HAtoms ( 𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) ) |
145 |
4 144
|
syl5bi |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( ( 𝑦 ≠ 0ℎ ∧ 𝐴 = ( span ‘ { 𝑦 } ) ) ∧ ( 𝑧 ≠ 0ℎ ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) → ( 𝐴 ≠ 𝐵 → ∃ 𝑥 ∈ HAtoms ( 𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) ) |
146 |
145
|
rexlimivv |
⊢ ( ∃ 𝑦 ∈ ℋ ∃ 𝑧 ∈ ℋ ( ( 𝑦 ≠ 0ℎ ∧ 𝐴 = ( span ‘ { 𝑦 } ) ) ∧ ( 𝑧 ≠ 0ℎ ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) → ( 𝐴 ≠ 𝐵 → ∃ 𝑥 ∈ HAtoms ( 𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) |
147 |
3 146
|
sylbir |
⊢ ( ( ∃ 𝑦 ∈ ℋ ( 𝑦 ≠ 0ℎ ∧ 𝐴 = ( span ‘ { 𝑦 } ) ) ∧ ∃ 𝑧 ∈ ℋ ( 𝑧 ≠ 0ℎ ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) → ( 𝐴 ≠ 𝐵 → ∃ 𝑥 ∈ HAtoms ( 𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) |
148 |
1 2 147
|
syl2anb |
⊢ ( ( 𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms ) → ( 𝐴 ≠ 𝐵 → ∃ 𝑥 ∈ HAtoms ( 𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) |
149 |
148
|
3impia |
⊢ ( ( 𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms ∧ 𝐴 ≠ 𝐵 ) → ∃ 𝑥 ∈ HAtoms ( 𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) |