Metamath Proof Explorer


Theorem superpos

Description: Superposition Principle. If A and B are distinct atoms, there exists a third atom, distinct from A and B , that is the superposition of A and B . Definition 3.4-3(a) in MegPav2000 p. 2345 (PDF p. 8). (Contributed by NM, 9-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion superpos ( ( 𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms ∧ 𝐴𝐵 ) → ∃ 𝑥 ∈ HAtoms ( 𝑥𝐴𝑥𝐵𝑥 ⊆ ( 𝐴 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 atom1d ( 𝐴 ∈ HAtoms ↔ ∃ 𝑦 ∈ ℋ ( 𝑦 ≠ 0𝐴 = ( span ‘ { 𝑦 } ) ) )
2 atom1d ( 𝐵 ∈ HAtoms ↔ ∃ 𝑧 ∈ ℋ ( 𝑧 ≠ 0𝐵 = ( span ‘ { 𝑧 } ) ) )
3 reeanv ( ∃ 𝑦 ∈ ℋ ∃ 𝑧 ∈ ℋ ( ( 𝑦 ≠ 0𝐴 = ( span ‘ { 𝑦 } ) ) ∧ ( 𝑧 ≠ 0𝐵 = ( span ‘ { 𝑧 } ) ) ) ↔ ( ∃ 𝑦 ∈ ℋ ( 𝑦 ≠ 0𝐴 = ( span ‘ { 𝑦 } ) ) ∧ ∃ 𝑧 ∈ ℋ ( 𝑧 ≠ 0𝐵 = ( span ‘ { 𝑧 } ) ) ) )
4 an4 ( ( ( 𝑦 ≠ 0𝐴 = ( span ‘ { 𝑦 } ) ) ∧ ( 𝑧 ≠ 0𝐵 = ( span ‘ { 𝑧 } ) ) ) ↔ ( ( 𝑦 ≠ 0𝑧 ≠ 0 ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) )
5 neeq1 ( 𝐴 = ( span ‘ { 𝑦 } ) → ( 𝐴𝐵 ↔ ( span ‘ { 𝑦 } ) ≠ 𝐵 ) )
6 neeq2 ( 𝐵 = ( span ‘ { 𝑧 } ) → ( ( span ‘ { 𝑦 } ) ≠ 𝐵 ↔ ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) ) )
7 5 6 sylan9bb ( ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) → ( 𝐴𝐵 ↔ ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) ) )
8 7 adantl ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝑦 ≠ 0𝑧 ≠ 0 ) ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) → ( 𝐴𝐵 ↔ ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) ) )
9 hvaddcl ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑦 + 𝑧 ) ∈ ℋ )
10 9 adantr ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) ) → ( 𝑦 + 𝑧 ) ∈ ℋ )
11 hvaddeq0 ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑦 + 𝑧 ) = 0𝑦 = ( - 1 · 𝑧 ) ) )
12 sneq ( 𝑦 = ( - 1 · 𝑧 ) → { 𝑦 } = { ( - 1 · 𝑧 ) } )
13 12 fveq2d ( 𝑦 = ( - 1 · 𝑧 ) → ( span ‘ { 𝑦 } ) = ( span ‘ { ( - 1 · 𝑧 ) } ) )
14 neg1cn - 1 ∈ ℂ
15 neg1ne0 - 1 ≠ 0
16 spansncol ( ( 𝑧 ∈ ℋ ∧ - 1 ∈ ℂ ∧ - 1 ≠ 0 ) → ( span ‘ { ( - 1 · 𝑧 ) } ) = ( span ‘ { 𝑧 } ) )
17 14 15 16 mp3an23 ( 𝑧 ∈ ℋ → ( span ‘ { ( - 1 · 𝑧 ) } ) = ( span ‘ { 𝑧 } ) )
18 13 17 sylan9eqr ( ( 𝑧 ∈ ℋ ∧ 𝑦 = ( - 1 · 𝑧 ) ) → ( span ‘ { 𝑦 } ) = ( span ‘ { 𝑧 } ) )
19 18 ex ( 𝑧 ∈ ℋ → ( 𝑦 = ( - 1 · 𝑧 ) → ( span ‘ { 𝑦 } ) = ( span ‘ { 𝑧 } ) ) )
20 19 adantl ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑦 = ( - 1 · 𝑧 ) → ( span ‘ { 𝑦 } ) = ( span ‘ { 𝑧 } ) ) )
21 11 20 sylbid ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑦 + 𝑧 ) = 0 → ( span ‘ { 𝑦 } ) = ( span ‘ { 𝑧 } ) ) )
22 21 necon3d ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) → ( 𝑦 + 𝑧 ) ≠ 0 ) )
23 22 imp ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) ) → ( 𝑦 + 𝑧 ) ≠ 0 )
24 spansna ( ( ( 𝑦 + 𝑧 ) ∈ ℋ ∧ ( 𝑦 + 𝑧 ) ≠ 0 ) → ( span ‘ { ( 𝑦 + 𝑧 ) } ) ∈ HAtoms )
25 10 23 24 syl2anc ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) ) → ( span ‘ { ( 𝑦 + 𝑧 ) } ) ∈ HAtoms )
26 25 adantlr ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝑦 ≠ 0𝑧 ≠ 0 ) ) ∧ ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) ) → ( span ‘ { ( 𝑦 + 𝑧 ) } ) ∈ HAtoms )
27 26 adantlr ( ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝑦 ≠ 0𝑧 ≠ 0 ) ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) ∧ ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) ) → ( span ‘ { ( 𝑦 + 𝑧 ) } ) ∈ HAtoms )
28 eqeq2 ( 𝐴 = ( span ‘ { 𝑦 } ) → ( ( span ‘ { ( 𝑦 + 𝑧 ) } ) = 𝐴 ↔ ( span ‘ { ( 𝑦 + 𝑧 ) } ) = ( span ‘ { 𝑦 } ) ) )
29 28 biimpd ( 𝐴 = ( span ‘ { 𝑦 } ) → ( ( span ‘ { ( 𝑦 + 𝑧 ) } ) = 𝐴 → ( span ‘ { ( 𝑦 + 𝑧 ) } ) = ( span ‘ { 𝑦 } ) ) )
30 spansneleqi ( ( 𝑦 + 𝑧 ) ∈ ℋ → ( ( span ‘ { ( 𝑦 + 𝑧 ) } ) = ( span ‘ { 𝑦 } ) → ( 𝑦 + 𝑧 ) ∈ ( span ‘ { 𝑦 } ) ) )
31 9 30 syl ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( span ‘ { ( 𝑦 + 𝑧 ) } ) = ( span ‘ { 𝑦 } ) → ( 𝑦 + 𝑧 ) ∈ ( span ‘ { 𝑦 } ) ) )
32 elspansn ( 𝑦 ∈ ℋ → ( ( 𝑦 + 𝑧 ) ∈ ( span ‘ { 𝑦 } ) ↔ ∃ 𝑣 ∈ ℂ ( 𝑦 + 𝑧 ) = ( 𝑣 · 𝑦 ) ) )
33 32 adantr ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑦 + 𝑧 ) ∈ ( span ‘ { 𝑦 } ) ↔ ∃ 𝑣 ∈ ℂ ( 𝑦 + 𝑧 ) = ( 𝑣 · 𝑦 ) ) )
34 addcl ( ( 𝑣 ∈ ℂ ∧ - 1 ∈ ℂ ) → ( 𝑣 + - 1 ) ∈ ℂ )
35 14 34 mpan2 ( 𝑣 ∈ ℂ → ( 𝑣 + - 1 ) ∈ ℂ )
36 35 ad2antlr ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) ∧ ( 𝑦 + 𝑧 ) = ( 𝑣 · 𝑦 ) ) → ( 𝑣 + - 1 ) ∈ ℂ )
37 hvmulcl ( ( 𝑣 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑣 · 𝑦 ) ∈ ℋ )
38 37 ancoms ( ( 𝑦 ∈ ℋ ∧ 𝑣 ∈ ℂ ) → ( 𝑣 · 𝑦 ) ∈ ℋ )
39 38 adantlr ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) → ( 𝑣 · 𝑦 ) ∈ ℋ )
40 simpll ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) → 𝑦 ∈ ℋ )
41 simplr ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) → 𝑧 ∈ ℋ )
42 hvsubadd ( ( ( 𝑣 · 𝑦 ) ∈ ℋ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( ( 𝑣 · 𝑦 ) − 𝑦 ) = 𝑧 ↔ ( 𝑦 + 𝑧 ) = ( 𝑣 · 𝑦 ) ) )
43 39 40 41 42 syl3anc ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) → ( ( ( 𝑣 · 𝑦 ) − 𝑦 ) = 𝑧 ↔ ( 𝑦 + 𝑧 ) = ( 𝑣 · 𝑦 ) ) )
44 43 biimpar ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) ∧ ( 𝑦 + 𝑧 ) = ( 𝑣 · 𝑦 ) ) → ( ( 𝑣 · 𝑦 ) − 𝑦 ) = 𝑧 )
45 hvsubval ( ( ( 𝑣 · 𝑦 ) ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑣 · 𝑦 ) − 𝑦 ) = ( ( 𝑣 · 𝑦 ) + ( - 1 · 𝑦 ) ) )
46 37 45 sylancom ( ( 𝑣 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑣 · 𝑦 ) − 𝑦 ) = ( ( 𝑣 · 𝑦 ) + ( - 1 · 𝑦 ) ) )
47 ax-hvdistr2 ( ( 𝑣 ∈ ℂ ∧ - 1 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑣 + - 1 ) · 𝑦 ) = ( ( 𝑣 · 𝑦 ) + ( - 1 · 𝑦 ) ) )
48 14 47 mp3an2 ( ( 𝑣 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑣 + - 1 ) · 𝑦 ) = ( ( 𝑣 · 𝑦 ) + ( - 1 · 𝑦 ) ) )
49 46 48 eqtr4d ( ( 𝑣 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑣 · 𝑦 ) − 𝑦 ) = ( ( 𝑣 + - 1 ) · 𝑦 ) )
50 49 ancoms ( ( 𝑦 ∈ ℋ ∧ 𝑣 ∈ ℂ ) → ( ( 𝑣 · 𝑦 ) − 𝑦 ) = ( ( 𝑣 + - 1 ) · 𝑦 ) )
51 50 adantlr ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) → ( ( 𝑣 · 𝑦 ) − 𝑦 ) = ( ( 𝑣 + - 1 ) · 𝑦 ) )
52 51 adantr ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) ∧ ( 𝑦 + 𝑧 ) = ( 𝑣 · 𝑦 ) ) → ( ( 𝑣 · 𝑦 ) − 𝑦 ) = ( ( 𝑣 + - 1 ) · 𝑦 ) )
53 44 52 eqtr3d ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) ∧ ( 𝑦 + 𝑧 ) = ( 𝑣 · 𝑦 ) ) → 𝑧 = ( ( 𝑣 + - 1 ) · 𝑦 ) )
54 oveq1 ( 𝑤 = ( 𝑣 + - 1 ) → ( 𝑤 · 𝑦 ) = ( ( 𝑣 + - 1 ) · 𝑦 ) )
55 54 rspceeqv ( ( ( 𝑣 + - 1 ) ∈ ℂ ∧ 𝑧 = ( ( 𝑣 + - 1 ) · 𝑦 ) ) → ∃ 𝑤 ∈ ℂ 𝑧 = ( 𝑤 · 𝑦 ) )
56 36 53 55 syl2anc ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) ∧ ( 𝑦 + 𝑧 ) = ( 𝑣 · 𝑦 ) ) → ∃ 𝑤 ∈ ℂ 𝑧 = ( 𝑤 · 𝑦 ) )
57 56 rexlimdva2 ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ∃ 𝑣 ∈ ℂ ( 𝑦 + 𝑧 ) = ( 𝑣 · 𝑦 ) → ∃ 𝑤 ∈ ℂ 𝑧 = ( 𝑤 · 𝑦 ) ) )
58 33 57 sylbid ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑦 + 𝑧 ) ∈ ( span ‘ { 𝑦 } ) → ∃ 𝑤 ∈ ℂ 𝑧 = ( 𝑤 · 𝑦 ) ) )
59 31 58 syld ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( span ‘ { ( 𝑦 + 𝑧 ) } ) = ( span ‘ { 𝑦 } ) → ∃ 𝑤 ∈ ℂ 𝑧 = ( 𝑤 · 𝑦 ) ) )
60 elspansn ( 𝑦 ∈ ℋ → ( 𝑧 ∈ ( span ‘ { 𝑦 } ) ↔ ∃ 𝑤 ∈ ℂ 𝑧 = ( 𝑤 · 𝑦 ) ) )
61 60 adantr ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑧 ∈ ( span ‘ { 𝑦 } ) ↔ ∃ 𝑤 ∈ ℂ 𝑧 = ( 𝑤 · 𝑦 ) ) )
62 59 61 sylibrd ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( span ‘ { ( 𝑦 + 𝑧 ) } ) = ( span ‘ { 𝑦 } ) → 𝑧 ∈ ( span ‘ { 𝑦 } ) ) )
63 62 adantr ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑧 ≠ 0 ) → ( ( span ‘ { ( 𝑦 + 𝑧 ) } ) = ( span ‘ { 𝑦 } ) → 𝑧 ∈ ( span ‘ { 𝑦 } ) ) )
64 spansneleq ( ( 𝑦 ∈ ℋ ∧ 𝑧 ≠ 0 ) → ( 𝑧 ∈ ( span ‘ { 𝑦 } ) → ( span ‘ { 𝑧 } ) = ( span ‘ { 𝑦 } ) ) )
65 eqcom ( ( span ‘ { 𝑧 } ) = ( span ‘ { 𝑦 } ) ↔ ( span ‘ { 𝑦 } ) = ( span ‘ { 𝑧 } ) )
66 64 65 syl6ib ( ( 𝑦 ∈ ℋ ∧ 𝑧 ≠ 0 ) → ( 𝑧 ∈ ( span ‘ { 𝑦 } ) → ( span ‘ { 𝑦 } ) = ( span ‘ { 𝑧 } ) ) )
67 66 adantlr ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑧 ≠ 0 ) → ( 𝑧 ∈ ( span ‘ { 𝑦 } ) → ( span ‘ { 𝑦 } ) = ( span ‘ { 𝑧 } ) ) )
68 63 67 syld ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑧 ≠ 0 ) → ( ( span ‘ { ( 𝑦 + 𝑧 ) } ) = ( span ‘ { 𝑦 } ) → ( span ‘ { 𝑦 } ) = ( span ‘ { 𝑧 } ) ) )
69 29 68 sylan9r ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑧 ≠ 0 ) ∧ 𝐴 = ( span ‘ { 𝑦 } ) ) → ( ( span ‘ { ( 𝑦 + 𝑧 ) } ) = 𝐴 → ( span ‘ { 𝑦 } ) = ( span ‘ { 𝑧 } ) ) )
70 69 necon3d ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑧 ≠ 0 ) ∧ 𝐴 = ( span ‘ { 𝑦 } ) ) → ( ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) → ( span ‘ { ( 𝑦 + 𝑧 ) } ) ≠ 𝐴 ) )
71 70 adantlrl ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝑦 ≠ 0𝑧 ≠ 0 ) ) ∧ 𝐴 = ( span ‘ { 𝑦 } ) ) → ( ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) → ( span ‘ { ( 𝑦 + 𝑧 ) } ) ≠ 𝐴 ) )
72 71 adantrr ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝑦 ≠ 0𝑧 ≠ 0 ) ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) → ( ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) → ( span ‘ { ( 𝑦 + 𝑧 ) } ) ≠ 𝐴 ) )
73 72 imp ( ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝑦 ≠ 0𝑧 ≠ 0 ) ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) ∧ ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) ) → ( span ‘ { ( 𝑦 + 𝑧 ) } ) ≠ 𝐴 )
74 eqeq2 ( 𝐵 = ( span ‘ { 𝑧 } ) → ( ( span ‘ { ( 𝑦 + 𝑧 ) } ) = 𝐵 ↔ ( span ‘ { ( 𝑦 + 𝑧 ) } ) = ( span ‘ { 𝑧 } ) ) )
75 74 biimpd ( 𝐵 = ( span ‘ { 𝑧 } ) → ( ( span ‘ { ( 𝑦 + 𝑧 ) } ) = 𝐵 → ( span ‘ { ( 𝑦 + 𝑧 ) } ) = ( span ‘ { 𝑧 } ) ) )
76 spansneleqi ( ( 𝑦 + 𝑧 ) ∈ ℋ → ( ( span ‘ { ( 𝑦 + 𝑧 ) } ) = ( span ‘ { 𝑧 } ) → ( 𝑦 + 𝑧 ) ∈ ( span ‘ { 𝑧 } ) ) )
77 9 76 syl ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( span ‘ { ( 𝑦 + 𝑧 ) } ) = ( span ‘ { 𝑧 } ) → ( 𝑦 + 𝑧 ) ∈ ( span ‘ { 𝑧 } ) ) )
78 elspansn ( 𝑧 ∈ ℋ → ( ( 𝑦 + 𝑧 ) ∈ ( span ‘ { 𝑧 } ) ↔ ∃ 𝑣 ∈ ℂ ( 𝑦 + 𝑧 ) = ( 𝑣 · 𝑧 ) ) )
79 78 adantl ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑦 + 𝑧 ) ∈ ( span ‘ { 𝑧 } ) ↔ ∃ 𝑣 ∈ ℂ ( 𝑦 + 𝑧 ) = ( 𝑣 · 𝑧 ) ) )
80 35 ad2antlr ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) ∧ ( 𝑦 + 𝑧 ) = ( 𝑣 · 𝑧 ) ) → ( 𝑣 + - 1 ) ∈ ℂ )
81 hvmulcl ( ( 𝑣 ∈ ℂ ∧ 𝑧 ∈ ℋ ) → ( 𝑣 · 𝑧 ) ∈ ℋ )
82 81 ancoms ( ( 𝑧 ∈ ℋ ∧ 𝑣 ∈ ℂ ) → ( 𝑣 · 𝑧 ) ∈ ℋ )
83 82 adantll ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) → ( 𝑣 · 𝑧 ) ∈ ℋ )
84 hvsubadd ( ( ( 𝑣 · 𝑧 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( 𝑣 · 𝑧 ) − 𝑧 ) = 𝑦 ↔ ( 𝑧 + 𝑦 ) = ( 𝑣 · 𝑧 ) ) )
85 83 41 40 84 syl3anc ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) → ( ( ( 𝑣 · 𝑧 ) − 𝑧 ) = 𝑦 ↔ ( 𝑧 + 𝑦 ) = ( 𝑣 · 𝑧 ) ) )
86 ax-hvcom ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑦 + 𝑧 ) = ( 𝑧 + 𝑦 ) )
87 86 adantr ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) → ( 𝑦 + 𝑧 ) = ( 𝑧 + 𝑦 ) )
88 87 eqeq1d ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) → ( ( 𝑦 + 𝑧 ) = ( 𝑣 · 𝑧 ) ↔ ( 𝑧 + 𝑦 ) = ( 𝑣 · 𝑧 ) ) )
89 85 88 bitr4d ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) → ( ( ( 𝑣 · 𝑧 ) − 𝑧 ) = 𝑦 ↔ ( 𝑦 + 𝑧 ) = ( 𝑣 · 𝑧 ) ) )
90 89 biimpar ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) ∧ ( 𝑦 + 𝑧 ) = ( 𝑣 · 𝑧 ) ) → ( ( 𝑣 · 𝑧 ) − 𝑧 ) = 𝑦 )
91 hvsubval ( ( ( 𝑣 · 𝑧 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑣 · 𝑧 ) − 𝑧 ) = ( ( 𝑣 · 𝑧 ) + ( - 1 · 𝑧 ) ) )
92 81 91 sylancom ( ( 𝑣 ∈ ℂ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑣 · 𝑧 ) − 𝑧 ) = ( ( 𝑣 · 𝑧 ) + ( - 1 · 𝑧 ) ) )
93 ax-hvdistr2 ( ( 𝑣 ∈ ℂ ∧ - 1 ∈ ℂ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑣 + - 1 ) · 𝑧 ) = ( ( 𝑣 · 𝑧 ) + ( - 1 · 𝑧 ) ) )
94 14 93 mp3an2 ( ( 𝑣 ∈ ℂ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑣 + - 1 ) · 𝑧 ) = ( ( 𝑣 · 𝑧 ) + ( - 1 · 𝑧 ) ) )
95 92 94 eqtr4d ( ( 𝑣 ∈ ℂ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑣 · 𝑧 ) − 𝑧 ) = ( ( 𝑣 + - 1 ) · 𝑧 ) )
96 95 ancoms ( ( 𝑧 ∈ ℋ ∧ 𝑣 ∈ ℂ ) → ( ( 𝑣 · 𝑧 ) − 𝑧 ) = ( ( 𝑣 + - 1 ) · 𝑧 ) )
97 96 adantll ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) → ( ( 𝑣 · 𝑧 ) − 𝑧 ) = ( ( 𝑣 + - 1 ) · 𝑧 ) )
98 97 adantr ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) ∧ ( 𝑦 + 𝑧 ) = ( 𝑣 · 𝑧 ) ) → ( ( 𝑣 · 𝑧 ) − 𝑧 ) = ( ( 𝑣 + - 1 ) · 𝑧 ) )
99 90 98 eqtr3d ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) ∧ ( 𝑦 + 𝑧 ) = ( 𝑣 · 𝑧 ) ) → 𝑦 = ( ( 𝑣 + - 1 ) · 𝑧 ) )
100 oveq1 ( 𝑤 = ( 𝑣 + - 1 ) → ( 𝑤 · 𝑧 ) = ( ( 𝑣 + - 1 ) · 𝑧 ) )
101 100 rspceeqv ( ( ( 𝑣 + - 1 ) ∈ ℂ ∧ 𝑦 = ( ( 𝑣 + - 1 ) · 𝑧 ) ) → ∃ 𝑤 ∈ ℂ 𝑦 = ( 𝑤 · 𝑧 ) )
102 80 99 101 syl2anc ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑣 ∈ ℂ ) ∧ ( 𝑦 + 𝑧 ) = ( 𝑣 · 𝑧 ) ) → ∃ 𝑤 ∈ ℂ 𝑦 = ( 𝑤 · 𝑧 ) )
103 102 rexlimdva2 ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ∃ 𝑣 ∈ ℂ ( 𝑦 + 𝑧 ) = ( 𝑣 · 𝑧 ) → ∃ 𝑤 ∈ ℂ 𝑦 = ( 𝑤 · 𝑧 ) ) )
104 79 103 sylbid ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑦 + 𝑧 ) ∈ ( span ‘ { 𝑧 } ) → ∃ 𝑤 ∈ ℂ 𝑦 = ( 𝑤 · 𝑧 ) ) )
105 77 104 syld ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( span ‘ { ( 𝑦 + 𝑧 ) } ) = ( span ‘ { 𝑧 } ) → ∃ 𝑤 ∈ ℂ 𝑦 = ( 𝑤 · 𝑧 ) ) )
106 elspansn ( 𝑧 ∈ ℋ → ( 𝑦 ∈ ( span ‘ { 𝑧 } ) ↔ ∃ 𝑤 ∈ ℂ 𝑦 = ( 𝑤 · 𝑧 ) ) )
107 106 adantl ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑦 ∈ ( span ‘ { 𝑧 } ) ↔ ∃ 𝑤 ∈ ℂ 𝑦 = ( 𝑤 · 𝑧 ) ) )
108 105 107 sylibrd ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( span ‘ { ( 𝑦 + 𝑧 ) } ) = ( span ‘ { 𝑧 } ) → 𝑦 ∈ ( span ‘ { 𝑧 } ) ) )
109 108 adantr ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑦 ≠ 0 ) → ( ( span ‘ { ( 𝑦 + 𝑧 ) } ) = ( span ‘ { 𝑧 } ) → 𝑦 ∈ ( span ‘ { 𝑧 } ) ) )
110 spansneleq ( ( 𝑧 ∈ ℋ ∧ 𝑦 ≠ 0 ) → ( 𝑦 ∈ ( span ‘ { 𝑧 } ) → ( span ‘ { 𝑦 } ) = ( span ‘ { 𝑧 } ) ) )
111 110 adantll ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑦 ≠ 0 ) → ( 𝑦 ∈ ( span ‘ { 𝑧 } ) → ( span ‘ { 𝑦 } ) = ( span ‘ { 𝑧 } ) ) )
112 109 111 syld ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑦 ≠ 0 ) → ( ( span ‘ { ( 𝑦 + 𝑧 ) } ) = ( span ‘ { 𝑧 } ) → ( span ‘ { 𝑦 } ) = ( span ‘ { 𝑧 } ) ) )
113 75 112 sylan9r ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑦 ≠ 0 ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) → ( ( span ‘ { ( 𝑦 + 𝑧 ) } ) = 𝐵 → ( span ‘ { 𝑦 } ) = ( span ‘ { 𝑧 } ) ) )
114 113 necon3d ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ 𝑦 ≠ 0 ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) → ( ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) → ( span ‘ { ( 𝑦 + 𝑧 ) } ) ≠ 𝐵 ) )
115 114 adantlrr ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝑦 ≠ 0𝑧 ≠ 0 ) ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) → ( ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) → ( span ‘ { ( 𝑦 + 𝑧 ) } ) ≠ 𝐵 ) )
116 115 adantrl ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝑦 ≠ 0𝑧 ≠ 0 ) ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) → ( ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) → ( span ‘ { ( 𝑦 + 𝑧 ) } ) ≠ 𝐵 ) )
117 116 imp ( ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝑦 ≠ 0𝑧 ≠ 0 ) ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) ∧ ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) ) → ( span ‘ { ( 𝑦 + 𝑧 ) } ) ≠ 𝐵 )
118 spanpr ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( span ‘ { ( 𝑦 + 𝑧 ) } ) ⊆ ( span ‘ { 𝑦 , 𝑧 } ) )
119 118 adantr ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) → ( span ‘ { ( 𝑦 + 𝑧 ) } ) ⊆ ( span ‘ { 𝑦 , 𝑧 } ) )
120 oveq12 ( ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) → ( 𝐴 𝐵 ) = ( ( span ‘ { 𝑦 } ) ∨ ( span ‘ { 𝑧 } ) ) )
121 df-pr { 𝑦 , 𝑧 } = ( { 𝑦 } ∪ { 𝑧 } )
122 121 fveq2i ( span ‘ { 𝑦 , 𝑧 } ) = ( span ‘ ( { 𝑦 } ∪ { 𝑧 } ) )
123 snssi ( 𝑦 ∈ ℋ → { 𝑦 } ⊆ ℋ )
124 snssi ( 𝑧 ∈ ℋ → { 𝑧 } ⊆ ℋ )
125 spanun ( ( { 𝑦 } ⊆ ℋ ∧ { 𝑧 } ⊆ ℋ ) → ( span ‘ ( { 𝑦 } ∪ { 𝑧 } ) ) = ( ( span ‘ { 𝑦 } ) + ( span ‘ { 𝑧 } ) ) )
126 123 124 125 syl2an ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( span ‘ ( { 𝑦 } ∪ { 𝑧 } ) ) = ( ( span ‘ { 𝑦 } ) + ( span ‘ { 𝑧 } ) ) )
127 122 126 syl5eq ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( span ‘ { 𝑦 , 𝑧 } ) = ( ( span ‘ { 𝑦 } ) + ( span ‘ { 𝑧 } ) ) )
128 spansnch ( 𝑦 ∈ ℋ → ( span ‘ { 𝑦 } ) ∈ C )
129 spansnj ( ( ( span ‘ { 𝑦 } ) ∈ C𝑧 ∈ ℋ ) → ( ( span ‘ { 𝑦 } ) + ( span ‘ { 𝑧 } ) ) = ( ( span ‘ { 𝑦 } ) ∨ ( span ‘ { 𝑧 } ) ) )
130 128 129 sylan ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( span ‘ { 𝑦 } ) + ( span ‘ { 𝑧 } ) ) = ( ( span ‘ { 𝑦 } ) ∨ ( span ‘ { 𝑧 } ) ) )
131 127 130 eqtr2d ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( span ‘ { 𝑦 } ) ∨ ( span ‘ { 𝑧 } ) ) = ( span ‘ { 𝑦 , 𝑧 } ) )
132 120 131 sylan9eqr ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) → ( 𝐴 𝐵 ) = ( span ‘ { 𝑦 , 𝑧 } ) )
133 119 132 sseqtrrd ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) → ( span ‘ { ( 𝑦 + 𝑧 ) } ) ⊆ ( 𝐴 𝐵 ) )
134 133 adantlr ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝑦 ≠ 0𝑧 ≠ 0 ) ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) → ( span ‘ { ( 𝑦 + 𝑧 ) } ) ⊆ ( 𝐴 𝐵 ) )
135 134 adantr ( ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝑦 ≠ 0𝑧 ≠ 0 ) ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) ∧ ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) ) → ( span ‘ { ( 𝑦 + 𝑧 ) } ) ⊆ ( 𝐴 𝐵 ) )
136 neeq1 ( 𝑥 = ( span ‘ { ( 𝑦 + 𝑧 ) } ) → ( 𝑥𝐴 ↔ ( span ‘ { ( 𝑦 + 𝑧 ) } ) ≠ 𝐴 ) )
137 neeq1 ( 𝑥 = ( span ‘ { ( 𝑦 + 𝑧 ) } ) → ( 𝑥𝐵 ↔ ( span ‘ { ( 𝑦 + 𝑧 ) } ) ≠ 𝐵 ) )
138 sseq1 ( 𝑥 = ( span ‘ { ( 𝑦 + 𝑧 ) } ) → ( 𝑥 ⊆ ( 𝐴 𝐵 ) ↔ ( span ‘ { ( 𝑦 + 𝑧 ) } ) ⊆ ( 𝐴 𝐵 ) ) )
139 136 137 138 3anbi123d ( 𝑥 = ( span ‘ { ( 𝑦 + 𝑧 ) } ) → ( ( 𝑥𝐴𝑥𝐵𝑥 ⊆ ( 𝐴 𝐵 ) ) ↔ ( ( span ‘ { ( 𝑦 + 𝑧 ) } ) ≠ 𝐴 ∧ ( span ‘ { ( 𝑦 + 𝑧 ) } ) ≠ 𝐵 ∧ ( span ‘ { ( 𝑦 + 𝑧 ) } ) ⊆ ( 𝐴 𝐵 ) ) ) )
140 139 rspcev ( ( ( span ‘ { ( 𝑦 + 𝑧 ) } ) ∈ HAtoms ∧ ( ( span ‘ { ( 𝑦 + 𝑧 ) } ) ≠ 𝐴 ∧ ( span ‘ { ( 𝑦 + 𝑧 ) } ) ≠ 𝐵 ∧ ( span ‘ { ( 𝑦 + 𝑧 ) } ) ⊆ ( 𝐴 𝐵 ) ) ) → ∃ 𝑥 ∈ HAtoms ( 𝑥𝐴𝑥𝐵𝑥 ⊆ ( 𝐴 𝐵 ) ) )
141 27 73 117 135 140 syl13anc ( ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝑦 ≠ 0𝑧 ≠ 0 ) ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) ∧ ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) ) → ∃ 𝑥 ∈ HAtoms ( 𝑥𝐴𝑥𝐵𝑥 ⊆ ( 𝐴 𝐵 ) ) )
142 141 ex ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝑦 ≠ 0𝑧 ≠ 0 ) ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) → ( ( span ‘ { 𝑦 } ) ≠ ( span ‘ { 𝑧 } ) → ∃ 𝑥 ∈ HAtoms ( 𝑥𝐴𝑥𝐵𝑥 ⊆ ( 𝐴 𝐵 ) ) ) )
143 8 142 sylbid ( ( ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ∧ ( 𝑦 ≠ 0𝑧 ≠ 0 ) ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) → ( 𝐴𝐵 → ∃ 𝑥 ∈ HAtoms ( 𝑥𝐴𝑥𝐵𝑥 ⊆ ( 𝐴 𝐵 ) ) ) )
144 143 expl ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( ( 𝑦 ≠ 0𝑧 ≠ 0 ) ∧ ( 𝐴 = ( span ‘ { 𝑦 } ) ∧ 𝐵 = ( span ‘ { 𝑧 } ) ) ) → ( 𝐴𝐵 → ∃ 𝑥 ∈ HAtoms ( 𝑥𝐴𝑥𝐵𝑥 ⊆ ( 𝐴 𝐵 ) ) ) ) )
145 4 144 syl5bi ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( ( 𝑦 ≠ 0𝐴 = ( span ‘ { 𝑦 } ) ) ∧ ( 𝑧 ≠ 0𝐵 = ( span ‘ { 𝑧 } ) ) ) → ( 𝐴𝐵 → ∃ 𝑥 ∈ HAtoms ( 𝑥𝐴𝑥𝐵𝑥 ⊆ ( 𝐴 𝐵 ) ) ) ) )
146 145 rexlimivv ( ∃ 𝑦 ∈ ℋ ∃ 𝑧 ∈ ℋ ( ( 𝑦 ≠ 0𝐴 = ( span ‘ { 𝑦 } ) ) ∧ ( 𝑧 ≠ 0𝐵 = ( span ‘ { 𝑧 } ) ) ) → ( 𝐴𝐵 → ∃ 𝑥 ∈ HAtoms ( 𝑥𝐴𝑥𝐵𝑥 ⊆ ( 𝐴 𝐵 ) ) ) )
147 3 146 sylbir ( ( ∃ 𝑦 ∈ ℋ ( 𝑦 ≠ 0𝐴 = ( span ‘ { 𝑦 } ) ) ∧ ∃ 𝑧 ∈ ℋ ( 𝑧 ≠ 0𝐵 = ( span ‘ { 𝑧 } ) ) ) → ( 𝐴𝐵 → ∃ 𝑥 ∈ HAtoms ( 𝑥𝐴𝑥𝐵𝑥 ⊆ ( 𝐴 𝐵 ) ) ) )
148 1 2 147 syl2anb ( ( 𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms ) → ( 𝐴𝐵 → ∃ 𝑥 ∈ HAtoms ( 𝑥𝐴𝑥𝐵𝑥 ⊆ ( 𝐴 𝐵 ) ) ) )
149 148 3impia ( ( 𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms ∧ 𝐴𝐵 ) → ∃ 𝑥 ∈ HAtoms ( 𝑥𝐴𝑥𝐵𝑥 ⊆ ( 𝐴 𝐵 ) ) )