| Step | Hyp | Ref | Expression | 
						
							| 1 |  | atom1d |  |-  ( A e. HAtoms <-> E. y e. ~H ( y =/= 0h /\ A = ( span ` { y } ) ) ) | 
						
							| 2 |  | atom1d |  |-  ( B e. HAtoms <-> E. z e. ~H ( z =/= 0h /\ B = ( span ` { z } ) ) ) | 
						
							| 3 |  | reeanv |  |-  ( E. y e. ~H E. z e. ~H ( ( y =/= 0h /\ A = ( span ` { y } ) ) /\ ( z =/= 0h /\ B = ( span ` { z } ) ) ) <-> ( E. y e. ~H ( y =/= 0h /\ A = ( span ` { y } ) ) /\ E. z e. ~H ( z =/= 0h /\ B = ( span ` { z } ) ) ) ) | 
						
							| 4 |  | an4 |  |-  ( ( ( y =/= 0h /\ A = ( span ` { y } ) ) /\ ( z =/= 0h /\ B = ( span ` { z } ) ) ) <-> ( ( y =/= 0h /\ z =/= 0h ) /\ ( A = ( span ` { y } ) /\ B = ( span ` { z } ) ) ) ) | 
						
							| 5 |  | neeq1 |  |-  ( A = ( span ` { y } ) -> ( A =/= B <-> ( span ` { y } ) =/= B ) ) | 
						
							| 6 |  | neeq2 |  |-  ( B = ( span ` { z } ) -> ( ( span ` { y } ) =/= B <-> ( span ` { y } ) =/= ( span ` { z } ) ) ) | 
						
							| 7 | 5 6 | sylan9bb |  |-  ( ( A = ( span ` { y } ) /\ B = ( span ` { z } ) ) -> ( A =/= B <-> ( span ` { y } ) =/= ( span ` { z } ) ) ) | 
						
							| 8 | 7 | adantl |  |-  ( ( ( ( y e. ~H /\ z e. ~H ) /\ ( y =/= 0h /\ z =/= 0h ) ) /\ ( A = ( span ` { y } ) /\ B = ( span ` { z } ) ) ) -> ( A =/= B <-> ( span ` { y } ) =/= ( span ` { z } ) ) ) | 
						
							| 9 |  | hvaddcl |  |-  ( ( y e. ~H /\ z e. ~H ) -> ( y +h z ) e. ~H ) | 
						
							| 10 | 9 | adantr |  |-  ( ( ( y e. ~H /\ z e. ~H ) /\ ( span ` { y } ) =/= ( span ` { z } ) ) -> ( y +h z ) e. ~H ) | 
						
							| 11 |  | hvaddeq0 |  |-  ( ( y e. ~H /\ z e. ~H ) -> ( ( y +h z ) = 0h <-> y = ( -u 1 .h z ) ) ) | 
						
							| 12 |  | sneq |  |-  ( y = ( -u 1 .h z ) -> { y } = { ( -u 1 .h z ) } ) | 
						
							| 13 | 12 | fveq2d |  |-  ( y = ( -u 1 .h z ) -> ( span ` { y } ) = ( span ` { ( -u 1 .h z ) } ) ) | 
						
							| 14 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 15 |  | neg1ne0 |  |-  -u 1 =/= 0 | 
						
							| 16 |  | spansncol |  |-  ( ( z e. ~H /\ -u 1 e. CC /\ -u 1 =/= 0 ) -> ( span ` { ( -u 1 .h z ) } ) = ( span ` { z } ) ) | 
						
							| 17 | 14 15 16 | mp3an23 |  |-  ( z e. ~H -> ( span ` { ( -u 1 .h z ) } ) = ( span ` { z } ) ) | 
						
							| 18 | 13 17 | sylan9eqr |  |-  ( ( z e. ~H /\ y = ( -u 1 .h z ) ) -> ( span ` { y } ) = ( span ` { z } ) ) | 
						
							| 19 | 18 | ex |  |-  ( z e. ~H -> ( y = ( -u 1 .h z ) -> ( span ` { y } ) = ( span ` { z } ) ) ) | 
						
							| 20 | 19 | adantl |  |-  ( ( y e. ~H /\ z e. ~H ) -> ( y = ( -u 1 .h z ) -> ( span ` { y } ) = ( span ` { z } ) ) ) | 
						
							| 21 | 11 20 | sylbid |  |-  ( ( y e. ~H /\ z e. ~H ) -> ( ( y +h z ) = 0h -> ( span ` { y } ) = ( span ` { z } ) ) ) | 
						
							| 22 | 21 | necon3d |  |-  ( ( y e. ~H /\ z e. ~H ) -> ( ( span ` { y } ) =/= ( span ` { z } ) -> ( y +h z ) =/= 0h ) ) | 
						
							| 23 | 22 | imp |  |-  ( ( ( y e. ~H /\ z e. ~H ) /\ ( span ` { y } ) =/= ( span ` { z } ) ) -> ( y +h z ) =/= 0h ) | 
						
							| 24 |  | spansna |  |-  ( ( ( y +h z ) e. ~H /\ ( y +h z ) =/= 0h ) -> ( span ` { ( y +h z ) } ) e. HAtoms ) | 
						
							| 25 | 10 23 24 | syl2anc |  |-  ( ( ( y e. ~H /\ z e. ~H ) /\ ( span ` { y } ) =/= ( span ` { z } ) ) -> ( span ` { ( y +h z ) } ) e. HAtoms ) | 
						
							| 26 | 25 | adantlr |  |-  ( ( ( ( y e. ~H /\ z e. ~H ) /\ ( y =/= 0h /\ z =/= 0h ) ) /\ ( span ` { y } ) =/= ( span ` { z } ) ) -> ( span ` { ( y +h z ) } ) e. HAtoms ) | 
						
							| 27 | 26 | adantlr |  |-  ( ( ( ( ( y e. ~H /\ z e. ~H ) /\ ( y =/= 0h /\ z =/= 0h ) ) /\ ( A = ( span ` { y } ) /\ B = ( span ` { z } ) ) ) /\ ( span ` { y } ) =/= ( span ` { z } ) ) -> ( span ` { ( y +h z ) } ) e. HAtoms ) | 
						
							| 28 |  | eqeq2 |  |-  ( A = ( span ` { y } ) -> ( ( span ` { ( y +h z ) } ) = A <-> ( span ` { ( y +h z ) } ) = ( span ` { y } ) ) ) | 
						
							| 29 | 28 | biimpd |  |-  ( A = ( span ` { y } ) -> ( ( span ` { ( y +h z ) } ) = A -> ( span ` { ( y +h z ) } ) = ( span ` { y } ) ) ) | 
						
							| 30 |  | spansneleqi |  |-  ( ( y +h z ) e. ~H -> ( ( span ` { ( y +h z ) } ) = ( span ` { y } ) -> ( y +h z ) e. ( span ` { y } ) ) ) | 
						
							| 31 | 9 30 | syl |  |-  ( ( y e. ~H /\ z e. ~H ) -> ( ( span ` { ( y +h z ) } ) = ( span ` { y } ) -> ( y +h z ) e. ( span ` { y } ) ) ) | 
						
							| 32 |  | elspansn |  |-  ( y e. ~H -> ( ( y +h z ) e. ( span ` { y } ) <-> E. v e. CC ( y +h z ) = ( v .h y ) ) ) | 
						
							| 33 | 32 | adantr |  |-  ( ( y e. ~H /\ z e. ~H ) -> ( ( y +h z ) e. ( span ` { y } ) <-> E. v e. CC ( y +h z ) = ( v .h y ) ) ) | 
						
							| 34 |  | addcl |  |-  ( ( v e. CC /\ -u 1 e. CC ) -> ( v + -u 1 ) e. CC ) | 
						
							| 35 | 14 34 | mpan2 |  |-  ( v e. CC -> ( v + -u 1 ) e. CC ) | 
						
							| 36 | 35 | ad2antlr |  |-  ( ( ( ( y e. ~H /\ z e. ~H ) /\ v e. CC ) /\ ( y +h z ) = ( v .h y ) ) -> ( v + -u 1 ) e. CC ) | 
						
							| 37 |  | hvmulcl |  |-  ( ( v e. CC /\ y e. ~H ) -> ( v .h y ) e. ~H ) | 
						
							| 38 | 37 | ancoms |  |-  ( ( y e. ~H /\ v e. CC ) -> ( v .h y ) e. ~H ) | 
						
							| 39 | 38 | adantlr |  |-  ( ( ( y e. ~H /\ z e. ~H ) /\ v e. CC ) -> ( v .h y ) e. ~H ) | 
						
							| 40 |  | simpll |  |-  ( ( ( y e. ~H /\ z e. ~H ) /\ v e. CC ) -> y e. ~H ) | 
						
							| 41 |  | simplr |  |-  ( ( ( y e. ~H /\ z e. ~H ) /\ v e. CC ) -> z e. ~H ) | 
						
							| 42 |  | hvsubadd |  |-  ( ( ( v .h y ) e. ~H /\ y e. ~H /\ z e. ~H ) -> ( ( ( v .h y ) -h y ) = z <-> ( y +h z ) = ( v .h y ) ) ) | 
						
							| 43 | 39 40 41 42 | syl3anc |  |-  ( ( ( y e. ~H /\ z e. ~H ) /\ v e. CC ) -> ( ( ( v .h y ) -h y ) = z <-> ( y +h z ) = ( v .h y ) ) ) | 
						
							| 44 | 43 | biimpar |  |-  ( ( ( ( y e. ~H /\ z e. ~H ) /\ v e. CC ) /\ ( y +h z ) = ( v .h y ) ) -> ( ( v .h y ) -h y ) = z ) | 
						
							| 45 |  | hvsubval |  |-  ( ( ( v .h y ) e. ~H /\ y e. ~H ) -> ( ( v .h y ) -h y ) = ( ( v .h y ) +h ( -u 1 .h y ) ) ) | 
						
							| 46 | 37 45 | sylancom |  |-  ( ( v e. CC /\ y e. ~H ) -> ( ( v .h y ) -h y ) = ( ( v .h y ) +h ( -u 1 .h y ) ) ) | 
						
							| 47 |  | ax-hvdistr2 |  |-  ( ( v e. CC /\ -u 1 e. CC /\ y e. ~H ) -> ( ( v + -u 1 ) .h y ) = ( ( v .h y ) +h ( -u 1 .h y ) ) ) | 
						
							| 48 | 14 47 | mp3an2 |  |-  ( ( v e. CC /\ y e. ~H ) -> ( ( v + -u 1 ) .h y ) = ( ( v .h y ) +h ( -u 1 .h y ) ) ) | 
						
							| 49 | 46 48 | eqtr4d |  |-  ( ( v e. CC /\ y e. ~H ) -> ( ( v .h y ) -h y ) = ( ( v + -u 1 ) .h y ) ) | 
						
							| 50 | 49 | ancoms |  |-  ( ( y e. ~H /\ v e. CC ) -> ( ( v .h y ) -h y ) = ( ( v + -u 1 ) .h y ) ) | 
						
							| 51 | 50 | adantlr |  |-  ( ( ( y e. ~H /\ z e. ~H ) /\ v e. CC ) -> ( ( v .h y ) -h y ) = ( ( v + -u 1 ) .h y ) ) | 
						
							| 52 | 51 | adantr |  |-  ( ( ( ( y e. ~H /\ z e. ~H ) /\ v e. CC ) /\ ( y +h z ) = ( v .h y ) ) -> ( ( v .h y ) -h y ) = ( ( v + -u 1 ) .h y ) ) | 
						
							| 53 | 44 52 | eqtr3d |  |-  ( ( ( ( y e. ~H /\ z e. ~H ) /\ v e. CC ) /\ ( y +h z ) = ( v .h y ) ) -> z = ( ( v + -u 1 ) .h y ) ) | 
						
							| 54 |  | oveq1 |  |-  ( w = ( v + -u 1 ) -> ( w .h y ) = ( ( v + -u 1 ) .h y ) ) | 
						
							| 55 | 54 | rspceeqv |  |-  ( ( ( v + -u 1 ) e. CC /\ z = ( ( v + -u 1 ) .h y ) ) -> E. w e. CC z = ( w .h y ) ) | 
						
							| 56 | 36 53 55 | syl2anc |  |-  ( ( ( ( y e. ~H /\ z e. ~H ) /\ v e. CC ) /\ ( y +h z ) = ( v .h y ) ) -> E. w e. CC z = ( w .h y ) ) | 
						
							| 57 | 56 | rexlimdva2 |  |-  ( ( y e. ~H /\ z e. ~H ) -> ( E. v e. CC ( y +h z ) = ( v .h y ) -> E. w e. CC z = ( w .h y ) ) ) | 
						
							| 58 | 33 57 | sylbid |  |-  ( ( y e. ~H /\ z e. ~H ) -> ( ( y +h z ) e. ( span ` { y } ) -> E. w e. CC z = ( w .h y ) ) ) | 
						
							| 59 | 31 58 | syld |  |-  ( ( y e. ~H /\ z e. ~H ) -> ( ( span ` { ( y +h z ) } ) = ( span ` { y } ) -> E. w e. CC z = ( w .h y ) ) ) | 
						
							| 60 |  | elspansn |  |-  ( y e. ~H -> ( z e. ( span ` { y } ) <-> E. w e. CC z = ( w .h y ) ) ) | 
						
							| 61 | 60 | adantr |  |-  ( ( y e. ~H /\ z e. ~H ) -> ( z e. ( span ` { y } ) <-> E. w e. CC z = ( w .h y ) ) ) | 
						
							| 62 | 59 61 | sylibrd |  |-  ( ( y e. ~H /\ z e. ~H ) -> ( ( span ` { ( y +h z ) } ) = ( span ` { y } ) -> z e. ( span ` { y } ) ) ) | 
						
							| 63 | 62 | adantr |  |-  ( ( ( y e. ~H /\ z e. ~H ) /\ z =/= 0h ) -> ( ( span ` { ( y +h z ) } ) = ( span ` { y } ) -> z e. ( span ` { y } ) ) ) | 
						
							| 64 |  | spansneleq |  |-  ( ( y e. ~H /\ z =/= 0h ) -> ( z e. ( span ` { y } ) -> ( span ` { z } ) = ( span ` { y } ) ) ) | 
						
							| 65 |  | eqcom |  |-  ( ( span ` { z } ) = ( span ` { y } ) <-> ( span ` { y } ) = ( span ` { z } ) ) | 
						
							| 66 | 64 65 | imbitrdi |  |-  ( ( y e. ~H /\ z =/= 0h ) -> ( z e. ( span ` { y } ) -> ( span ` { y } ) = ( span ` { z } ) ) ) | 
						
							| 67 | 66 | adantlr |  |-  ( ( ( y e. ~H /\ z e. ~H ) /\ z =/= 0h ) -> ( z e. ( span ` { y } ) -> ( span ` { y } ) = ( span ` { z } ) ) ) | 
						
							| 68 | 63 67 | syld |  |-  ( ( ( y e. ~H /\ z e. ~H ) /\ z =/= 0h ) -> ( ( span ` { ( y +h z ) } ) = ( span ` { y } ) -> ( span ` { y } ) = ( span ` { z } ) ) ) | 
						
							| 69 | 29 68 | sylan9r |  |-  ( ( ( ( y e. ~H /\ z e. ~H ) /\ z =/= 0h ) /\ A = ( span ` { y } ) ) -> ( ( span ` { ( y +h z ) } ) = A -> ( span ` { y } ) = ( span ` { z } ) ) ) | 
						
							| 70 | 69 | necon3d |  |-  ( ( ( ( y e. ~H /\ z e. ~H ) /\ z =/= 0h ) /\ A = ( span ` { y } ) ) -> ( ( span ` { y } ) =/= ( span ` { z } ) -> ( span ` { ( y +h z ) } ) =/= A ) ) | 
						
							| 71 | 70 | adantlrl |  |-  ( ( ( ( y e. ~H /\ z e. ~H ) /\ ( y =/= 0h /\ z =/= 0h ) ) /\ A = ( span ` { y } ) ) -> ( ( span ` { y } ) =/= ( span ` { z } ) -> ( span ` { ( y +h z ) } ) =/= A ) ) | 
						
							| 72 | 71 | adantrr |  |-  ( ( ( ( y e. ~H /\ z e. ~H ) /\ ( y =/= 0h /\ z =/= 0h ) ) /\ ( A = ( span ` { y } ) /\ B = ( span ` { z } ) ) ) -> ( ( span ` { y } ) =/= ( span ` { z } ) -> ( span ` { ( y +h z ) } ) =/= A ) ) | 
						
							| 73 | 72 | imp |  |-  ( ( ( ( ( y e. ~H /\ z e. ~H ) /\ ( y =/= 0h /\ z =/= 0h ) ) /\ ( A = ( span ` { y } ) /\ B = ( span ` { z } ) ) ) /\ ( span ` { y } ) =/= ( span ` { z } ) ) -> ( span ` { ( y +h z ) } ) =/= A ) | 
						
							| 74 |  | eqeq2 |  |-  ( B = ( span ` { z } ) -> ( ( span ` { ( y +h z ) } ) = B <-> ( span ` { ( y +h z ) } ) = ( span ` { z } ) ) ) | 
						
							| 75 | 74 | biimpd |  |-  ( B = ( span ` { z } ) -> ( ( span ` { ( y +h z ) } ) = B -> ( span ` { ( y +h z ) } ) = ( span ` { z } ) ) ) | 
						
							| 76 |  | spansneleqi |  |-  ( ( y +h z ) e. ~H -> ( ( span ` { ( y +h z ) } ) = ( span ` { z } ) -> ( y +h z ) e. ( span ` { z } ) ) ) | 
						
							| 77 | 9 76 | syl |  |-  ( ( y e. ~H /\ z e. ~H ) -> ( ( span ` { ( y +h z ) } ) = ( span ` { z } ) -> ( y +h z ) e. ( span ` { z } ) ) ) | 
						
							| 78 |  | elspansn |  |-  ( z e. ~H -> ( ( y +h z ) e. ( span ` { z } ) <-> E. v e. CC ( y +h z ) = ( v .h z ) ) ) | 
						
							| 79 | 78 | adantl |  |-  ( ( y e. ~H /\ z e. ~H ) -> ( ( y +h z ) e. ( span ` { z } ) <-> E. v e. CC ( y +h z ) = ( v .h z ) ) ) | 
						
							| 80 | 35 | ad2antlr |  |-  ( ( ( ( y e. ~H /\ z e. ~H ) /\ v e. CC ) /\ ( y +h z ) = ( v .h z ) ) -> ( v + -u 1 ) e. CC ) | 
						
							| 81 |  | hvmulcl |  |-  ( ( v e. CC /\ z e. ~H ) -> ( v .h z ) e. ~H ) | 
						
							| 82 | 81 | ancoms |  |-  ( ( z e. ~H /\ v e. CC ) -> ( v .h z ) e. ~H ) | 
						
							| 83 | 82 | adantll |  |-  ( ( ( y e. ~H /\ z e. ~H ) /\ v e. CC ) -> ( v .h z ) e. ~H ) | 
						
							| 84 |  | hvsubadd |  |-  ( ( ( v .h z ) e. ~H /\ z e. ~H /\ y e. ~H ) -> ( ( ( v .h z ) -h z ) = y <-> ( z +h y ) = ( v .h z ) ) ) | 
						
							| 85 | 83 41 40 84 | syl3anc |  |-  ( ( ( y e. ~H /\ z e. ~H ) /\ v e. CC ) -> ( ( ( v .h z ) -h z ) = y <-> ( z +h y ) = ( v .h z ) ) ) | 
						
							| 86 |  | ax-hvcom |  |-  ( ( y e. ~H /\ z e. ~H ) -> ( y +h z ) = ( z +h y ) ) | 
						
							| 87 | 86 | adantr |  |-  ( ( ( y e. ~H /\ z e. ~H ) /\ v e. CC ) -> ( y +h z ) = ( z +h y ) ) | 
						
							| 88 | 87 | eqeq1d |  |-  ( ( ( y e. ~H /\ z e. ~H ) /\ v e. CC ) -> ( ( y +h z ) = ( v .h z ) <-> ( z +h y ) = ( v .h z ) ) ) | 
						
							| 89 | 85 88 | bitr4d |  |-  ( ( ( y e. ~H /\ z e. ~H ) /\ v e. CC ) -> ( ( ( v .h z ) -h z ) = y <-> ( y +h z ) = ( v .h z ) ) ) | 
						
							| 90 | 89 | biimpar |  |-  ( ( ( ( y e. ~H /\ z e. ~H ) /\ v e. CC ) /\ ( y +h z ) = ( v .h z ) ) -> ( ( v .h z ) -h z ) = y ) | 
						
							| 91 |  | hvsubval |  |-  ( ( ( v .h z ) e. ~H /\ z e. ~H ) -> ( ( v .h z ) -h z ) = ( ( v .h z ) +h ( -u 1 .h z ) ) ) | 
						
							| 92 | 81 91 | sylancom |  |-  ( ( v e. CC /\ z e. ~H ) -> ( ( v .h z ) -h z ) = ( ( v .h z ) +h ( -u 1 .h z ) ) ) | 
						
							| 93 |  | ax-hvdistr2 |  |-  ( ( v e. CC /\ -u 1 e. CC /\ z e. ~H ) -> ( ( v + -u 1 ) .h z ) = ( ( v .h z ) +h ( -u 1 .h z ) ) ) | 
						
							| 94 | 14 93 | mp3an2 |  |-  ( ( v e. CC /\ z e. ~H ) -> ( ( v + -u 1 ) .h z ) = ( ( v .h z ) +h ( -u 1 .h z ) ) ) | 
						
							| 95 | 92 94 | eqtr4d |  |-  ( ( v e. CC /\ z e. ~H ) -> ( ( v .h z ) -h z ) = ( ( v + -u 1 ) .h z ) ) | 
						
							| 96 | 95 | ancoms |  |-  ( ( z e. ~H /\ v e. CC ) -> ( ( v .h z ) -h z ) = ( ( v + -u 1 ) .h z ) ) | 
						
							| 97 | 96 | adantll |  |-  ( ( ( y e. ~H /\ z e. ~H ) /\ v e. CC ) -> ( ( v .h z ) -h z ) = ( ( v + -u 1 ) .h z ) ) | 
						
							| 98 | 97 | adantr |  |-  ( ( ( ( y e. ~H /\ z e. ~H ) /\ v e. CC ) /\ ( y +h z ) = ( v .h z ) ) -> ( ( v .h z ) -h z ) = ( ( v + -u 1 ) .h z ) ) | 
						
							| 99 | 90 98 | eqtr3d |  |-  ( ( ( ( y e. ~H /\ z e. ~H ) /\ v e. CC ) /\ ( y +h z ) = ( v .h z ) ) -> y = ( ( v + -u 1 ) .h z ) ) | 
						
							| 100 |  | oveq1 |  |-  ( w = ( v + -u 1 ) -> ( w .h z ) = ( ( v + -u 1 ) .h z ) ) | 
						
							| 101 | 100 | rspceeqv |  |-  ( ( ( v + -u 1 ) e. CC /\ y = ( ( v + -u 1 ) .h z ) ) -> E. w e. CC y = ( w .h z ) ) | 
						
							| 102 | 80 99 101 | syl2anc |  |-  ( ( ( ( y e. ~H /\ z e. ~H ) /\ v e. CC ) /\ ( y +h z ) = ( v .h z ) ) -> E. w e. CC y = ( w .h z ) ) | 
						
							| 103 | 102 | rexlimdva2 |  |-  ( ( y e. ~H /\ z e. ~H ) -> ( E. v e. CC ( y +h z ) = ( v .h z ) -> E. w e. CC y = ( w .h z ) ) ) | 
						
							| 104 | 79 103 | sylbid |  |-  ( ( y e. ~H /\ z e. ~H ) -> ( ( y +h z ) e. ( span ` { z } ) -> E. w e. CC y = ( w .h z ) ) ) | 
						
							| 105 | 77 104 | syld |  |-  ( ( y e. ~H /\ z e. ~H ) -> ( ( span ` { ( y +h z ) } ) = ( span ` { z } ) -> E. w e. CC y = ( w .h z ) ) ) | 
						
							| 106 |  | elspansn |  |-  ( z e. ~H -> ( y e. ( span ` { z } ) <-> E. w e. CC y = ( w .h z ) ) ) | 
						
							| 107 | 106 | adantl |  |-  ( ( y e. ~H /\ z e. ~H ) -> ( y e. ( span ` { z } ) <-> E. w e. CC y = ( w .h z ) ) ) | 
						
							| 108 | 105 107 | sylibrd |  |-  ( ( y e. ~H /\ z e. ~H ) -> ( ( span ` { ( y +h z ) } ) = ( span ` { z } ) -> y e. ( span ` { z } ) ) ) | 
						
							| 109 | 108 | adantr |  |-  ( ( ( y e. ~H /\ z e. ~H ) /\ y =/= 0h ) -> ( ( span ` { ( y +h z ) } ) = ( span ` { z } ) -> y e. ( span ` { z } ) ) ) | 
						
							| 110 |  | spansneleq |  |-  ( ( z e. ~H /\ y =/= 0h ) -> ( y e. ( span ` { z } ) -> ( span ` { y } ) = ( span ` { z } ) ) ) | 
						
							| 111 | 110 | adantll |  |-  ( ( ( y e. ~H /\ z e. ~H ) /\ y =/= 0h ) -> ( y e. ( span ` { z } ) -> ( span ` { y } ) = ( span ` { z } ) ) ) | 
						
							| 112 | 109 111 | syld |  |-  ( ( ( y e. ~H /\ z e. ~H ) /\ y =/= 0h ) -> ( ( span ` { ( y +h z ) } ) = ( span ` { z } ) -> ( span ` { y } ) = ( span ` { z } ) ) ) | 
						
							| 113 | 75 112 | sylan9r |  |-  ( ( ( ( y e. ~H /\ z e. ~H ) /\ y =/= 0h ) /\ B = ( span ` { z } ) ) -> ( ( span ` { ( y +h z ) } ) = B -> ( span ` { y } ) = ( span ` { z } ) ) ) | 
						
							| 114 | 113 | necon3d |  |-  ( ( ( ( y e. ~H /\ z e. ~H ) /\ y =/= 0h ) /\ B = ( span ` { z } ) ) -> ( ( span ` { y } ) =/= ( span ` { z } ) -> ( span ` { ( y +h z ) } ) =/= B ) ) | 
						
							| 115 | 114 | adantlrr |  |-  ( ( ( ( y e. ~H /\ z e. ~H ) /\ ( y =/= 0h /\ z =/= 0h ) ) /\ B = ( span ` { z } ) ) -> ( ( span ` { y } ) =/= ( span ` { z } ) -> ( span ` { ( y +h z ) } ) =/= B ) ) | 
						
							| 116 | 115 | adantrl |  |-  ( ( ( ( y e. ~H /\ z e. ~H ) /\ ( y =/= 0h /\ z =/= 0h ) ) /\ ( A = ( span ` { y } ) /\ B = ( span ` { z } ) ) ) -> ( ( span ` { y } ) =/= ( span ` { z } ) -> ( span ` { ( y +h z ) } ) =/= B ) ) | 
						
							| 117 | 116 | imp |  |-  ( ( ( ( ( y e. ~H /\ z e. ~H ) /\ ( y =/= 0h /\ z =/= 0h ) ) /\ ( A = ( span ` { y } ) /\ B = ( span ` { z } ) ) ) /\ ( span ` { y } ) =/= ( span ` { z } ) ) -> ( span ` { ( y +h z ) } ) =/= B ) | 
						
							| 118 |  | spanpr |  |-  ( ( y e. ~H /\ z e. ~H ) -> ( span ` { ( y +h z ) } ) C_ ( span ` { y , z } ) ) | 
						
							| 119 | 118 | adantr |  |-  ( ( ( y e. ~H /\ z e. ~H ) /\ ( A = ( span ` { y } ) /\ B = ( span ` { z } ) ) ) -> ( span ` { ( y +h z ) } ) C_ ( span ` { y , z } ) ) | 
						
							| 120 |  | oveq12 |  |-  ( ( A = ( span ` { y } ) /\ B = ( span ` { z } ) ) -> ( A vH B ) = ( ( span ` { y } ) vH ( span ` { z } ) ) ) | 
						
							| 121 |  | df-pr |  |-  { y , z } = ( { y } u. { z } ) | 
						
							| 122 | 121 | fveq2i |  |-  ( span ` { y , z } ) = ( span ` ( { y } u. { z } ) ) | 
						
							| 123 |  | snssi |  |-  ( y e. ~H -> { y } C_ ~H ) | 
						
							| 124 |  | snssi |  |-  ( z e. ~H -> { z } C_ ~H ) | 
						
							| 125 |  | spanun |  |-  ( ( { y } C_ ~H /\ { z } C_ ~H ) -> ( span ` ( { y } u. { z } ) ) = ( ( span ` { y } ) +H ( span ` { z } ) ) ) | 
						
							| 126 | 123 124 125 | syl2an |  |-  ( ( y e. ~H /\ z e. ~H ) -> ( span ` ( { y } u. { z } ) ) = ( ( span ` { y } ) +H ( span ` { z } ) ) ) | 
						
							| 127 | 122 126 | eqtrid |  |-  ( ( y e. ~H /\ z e. ~H ) -> ( span ` { y , z } ) = ( ( span ` { y } ) +H ( span ` { z } ) ) ) | 
						
							| 128 |  | spansnch |  |-  ( y e. ~H -> ( span ` { y } ) e. CH ) | 
						
							| 129 |  | spansnj |  |-  ( ( ( span ` { y } ) e. CH /\ z e. ~H ) -> ( ( span ` { y } ) +H ( span ` { z } ) ) = ( ( span ` { y } ) vH ( span ` { z } ) ) ) | 
						
							| 130 | 128 129 | sylan |  |-  ( ( y e. ~H /\ z e. ~H ) -> ( ( span ` { y } ) +H ( span ` { z } ) ) = ( ( span ` { y } ) vH ( span ` { z } ) ) ) | 
						
							| 131 | 127 130 | eqtr2d |  |-  ( ( y e. ~H /\ z e. ~H ) -> ( ( span ` { y } ) vH ( span ` { z } ) ) = ( span ` { y , z } ) ) | 
						
							| 132 | 120 131 | sylan9eqr |  |-  ( ( ( y e. ~H /\ z e. ~H ) /\ ( A = ( span ` { y } ) /\ B = ( span ` { z } ) ) ) -> ( A vH B ) = ( span ` { y , z } ) ) | 
						
							| 133 | 119 132 | sseqtrrd |  |-  ( ( ( y e. ~H /\ z e. ~H ) /\ ( A = ( span ` { y } ) /\ B = ( span ` { z } ) ) ) -> ( span ` { ( y +h z ) } ) C_ ( A vH B ) ) | 
						
							| 134 | 133 | adantlr |  |-  ( ( ( ( y e. ~H /\ z e. ~H ) /\ ( y =/= 0h /\ z =/= 0h ) ) /\ ( A = ( span ` { y } ) /\ B = ( span ` { z } ) ) ) -> ( span ` { ( y +h z ) } ) C_ ( A vH B ) ) | 
						
							| 135 | 134 | adantr |  |-  ( ( ( ( ( y e. ~H /\ z e. ~H ) /\ ( y =/= 0h /\ z =/= 0h ) ) /\ ( A = ( span ` { y } ) /\ B = ( span ` { z } ) ) ) /\ ( span ` { y } ) =/= ( span ` { z } ) ) -> ( span ` { ( y +h z ) } ) C_ ( A vH B ) ) | 
						
							| 136 |  | neeq1 |  |-  ( x = ( span ` { ( y +h z ) } ) -> ( x =/= A <-> ( span ` { ( y +h z ) } ) =/= A ) ) | 
						
							| 137 |  | neeq1 |  |-  ( x = ( span ` { ( y +h z ) } ) -> ( x =/= B <-> ( span ` { ( y +h z ) } ) =/= B ) ) | 
						
							| 138 |  | sseq1 |  |-  ( x = ( span ` { ( y +h z ) } ) -> ( x C_ ( A vH B ) <-> ( span ` { ( y +h z ) } ) C_ ( A vH B ) ) ) | 
						
							| 139 | 136 137 138 | 3anbi123d |  |-  ( x = ( span ` { ( y +h z ) } ) -> ( ( x =/= A /\ x =/= B /\ x C_ ( A vH B ) ) <-> ( ( span ` { ( y +h z ) } ) =/= A /\ ( span ` { ( y +h z ) } ) =/= B /\ ( span ` { ( y +h z ) } ) C_ ( A vH B ) ) ) ) | 
						
							| 140 | 139 | rspcev |  |-  ( ( ( span ` { ( y +h z ) } ) e. HAtoms /\ ( ( span ` { ( y +h z ) } ) =/= A /\ ( span ` { ( y +h z ) } ) =/= B /\ ( span ` { ( y +h z ) } ) C_ ( A vH B ) ) ) -> E. x e. HAtoms ( x =/= A /\ x =/= B /\ x C_ ( A vH B ) ) ) | 
						
							| 141 | 27 73 117 135 140 | syl13anc |  |-  ( ( ( ( ( y e. ~H /\ z e. ~H ) /\ ( y =/= 0h /\ z =/= 0h ) ) /\ ( A = ( span ` { y } ) /\ B = ( span ` { z } ) ) ) /\ ( span ` { y } ) =/= ( span ` { z } ) ) -> E. x e. HAtoms ( x =/= A /\ x =/= B /\ x C_ ( A vH B ) ) ) | 
						
							| 142 | 141 | ex |  |-  ( ( ( ( y e. ~H /\ z e. ~H ) /\ ( y =/= 0h /\ z =/= 0h ) ) /\ ( A = ( span ` { y } ) /\ B = ( span ` { z } ) ) ) -> ( ( span ` { y } ) =/= ( span ` { z } ) -> E. x e. HAtoms ( x =/= A /\ x =/= B /\ x C_ ( A vH B ) ) ) ) | 
						
							| 143 | 8 142 | sylbid |  |-  ( ( ( ( y e. ~H /\ z e. ~H ) /\ ( y =/= 0h /\ z =/= 0h ) ) /\ ( A = ( span ` { y } ) /\ B = ( span ` { z } ) ) ) -> ( A =/= B -> E. x e. HAtoms ( x =/= A /\ x =/= B /\ x C_ ( A vH B ) ) ) ) | 
						
							| 144 | 143 | expl |  |-  ( ( y e. ~H /\ z e. ~H ) -> ( ( ( y =/= 0h /\ z =/= 0h ) /\ ( A = ( span ` { y } ) /\ B = ( span ` { z } ) ) ) -> ( A =/= B -> E. x e. HAtoms ( x =/= A /\ x =/= B /\ x C_ ( A vH B ) ) ) ) ) | 
						
							| 145 | 4 144 | biimtrid |  |-  ( ( y e. ~H /\ z e. ~H ) -> ( ( ( y =/= 0h /\ A = ( span ` { y } ) ) /\ ( z =/= 0h /\ B = ( span ` { z } ) ) ) -> ( A =/= B -> E. x e. HAtoms ( x =/= A /\ x =/= B /\ x C_ ( A vH B ) ) ) ) ) | 
						
							| 146 | 145 | rexlimivv |  |-  ( E. y e. ~H E. z e. ~H ( ( y =/= 0h /\ A = ( span ` { y } ) ) /\ ( z =/= 0h /\ B = ( span ` { z } ) ) ) -> ( A =/= B -> E. x e. HAtoms ( x =/= A /\ x =/= B /\ x C_ ( A vH B ) ) ) ) | 
						
							| 147 | 3 146 | sylbir |  |-  ( ( E. y e. ~H ( y =/= 0h /\ A = ( span ` { y } ) ) /\ E. z e. ~H ( z =/= 0h /\ B = ( span ` { z } ) ) ) -> ( A =/= B -> E. x e. HAtoms ( x =/= A /\ x =/= B /\ x C_ ( A vH B ) ) ) ) | 
						
							| 148 | 1 2 147 | syl2anb |  |-  ( ( A e. HAtoms /\ B e. HAtoms ) -> ( A =/= B -> E. x e. HAtoms ( x =/= A /\ x =/= B /\ x C_ ( A vH B ) ) ) ) | 
						
							| 149 | 148 | 3impia |  |-  ( ( A e. HAtoms /\ B e. HAtoms /\ A =/= B ) -> E. x e. HAtoms ( x =/= A /\ x =/= B /\ x C_ ( A vH B ) ) ) |