Step |
Hyp |
Ref |
Expression |
1 |
|
atom1d |
|- ( A e. HAtoms <-> E. y e. ~H ( y =/= 0h /\ A = ( span ` { y } ) ) ) |
2 |
|
atom1d |
|- ( B e. HAtoms <-> E. z e. ~H ( z =/= 0h /\ B = ( span ` { z } ) ) ) |
3 |
|
reeanv |
|- ( E. y e. ~H E. z e. ~H ( ( y =/= 0h /\ A = ( span ` { y } ) ) /\ ( z =/= 0h /\ B = ( span ` { z } ) ) ) <-> ( E. y e. ~H ( y =/= 0h /\ A = ( span ` { y } ) ) /\ E. z e. ~H ( z =/= 0h /\ B = ( span ` { z } ) ) ) ) |
4 |
|
an4 |
|- ( ( ( y =/= 0h /\ A = ( span ` { y } ) ) /\ ( z =/= 0h /\ B = ( span ` { z } ) ) ) <-> ( ( y =/= 0h /\ z =/= 0h ) /\ ( A = ( span ` { y } ) /\ B = ( span ` { z } ) ) ) ) |
5 |
|
neeq1 |
|- ( A = ( span ` { y } ) -> ( A =/= B <-> ( span ` { y } ) =/= B ) ) |
6 |
|
neeq2 |
|- ( B = ( span ` { z } ) -> ( ( span ` { y } ) =/= B <-> ( span ` { y } ) =/= ( span ` { z } ) ) ) |
7 |
5 6
|
sylan9bb |
|- ( ( A = ( span ` { y } ) /\ B = ( span ` { z } ) ) -> ( A =/= B <-> ( span ` { y } ) =/= ( span ` { z } ) ) ) |
8 |
7
|
adantl |
|- ( ( ( ( y e. ~H /\ z e. ~H ) /\ ( y =/= 0h /\ z =/= 0h ) ) /\ ( A = ( span ` { y } ) /\ B = ( span ` { z } ) ) ) -> ( A =/= B <-> ( span ` { y } ) =/= ( span ` { z } ) ) ) |
9 |
|
hvaddcl |
|- ( ( y e. ~H /\ z e. ~H ) -> ( y +h z ) e. ~H ) |
10 |
9
|
adantr |
|- ( ( ( y e. ~H /\ z e. ~H ) /\ ( span ` { y } ) =/= ( span ` { z } ) ) -> ( y +h z ) e. ~H ) |
11 |
|
hvaddeq0 |
|- ( ( y e. ~H /\ z e. ~H ) -> ( ( y +h z ) = 0h <-> y = ( -u 1 .h z ) ) ) |
12 |
|
sneq |
|- ( y = ( -u 1 .h z ) -> { y } = { ( -u 1 .h z ) } ) |
13 |
12
|
fveq2d |
|- ( y = ( -u 1 .h z ) -> ( span ` { y } ) = ( span ` { ( -u 1 .h z ) } ) ) |
14 |
|
neg1cn |
|- -u 1 e. CC |
15 |
|
neg1ne0 |
|- -u 1 =/= 0 |
16 |
|
spansncol |
|- ( ( z e. ~H /\ -u 1 e. CC /\ -u 1 =/= 0 ) -> ( span ` { ( -u 1 .h z ) } ) = ( span ` { z } ) ) |
17 |
14 15 16
|
mp3an23 |
|- ( z e. ~H -> ( span ` { ( -u 1 .h z ) } ) = ( span ` { z } ) ) |
18 |
13 17
|
sylan9eqr |
|- ( ( z e. ~H /\ y = ( -u 1 .h z ) ) -> ( span ` { y } ) = ( span ` { z } ) ) |
19 |
18
|
ex |
|- ( z e. ~H -> ( y = ( -u 1 .h z ) -> ( span ` { y } ) = ( span ` { z } ) ) ) |
20 |
19
|
adantl |
|- ( ( y e. ~H /\ z e. ~H ) -> ( y = ( -u 1 .h z ) -> ( span ` { y } ) = ( span ` { z } ) ) ) |
21 |
11 20
|
sylbid |
|- ( ( y e. ~H /\ z e. ~H ) -> ( ( y +h z ) = 0h -> ( span ` { y } ) = ( span ` { z } ) ) ) |
22 |
21
|
necon3d |
|- ( ( y e. ~H /\ z e. ~H ) -> ( ( span ` { y } ) =/= ( span ` { z } ) -> ( y +h z ) =/= 0h ) ) |
23 |
22
|
imp |
|- ( ( ( y e. ~H /\ z e. ~H ) /\ ( span ` { y } ) =/= ( span ` { z } ) ) -> ( y +h z ) =/= 0h ) |
24 |
|
spansna |
|- ( ( ( y +h z ) e. ~H /\ ( y +h z ) =/= 0h ) -> ( span ` { ( y +h z ) } ) e. HAtoms ) |
25 |
10 23 24
|
syl2anc |
|- ( ( ( y e. ~H /\ z e. ~H ) /\ ( span ` { y } ) =/= ( span ` { z } ) ) -> ( span ` { ( y +h z ) } ) e. HAtoms ) |
26 |
25
|
adantlr |
|- ( ( ( ( y e. ~H /\ z e. ~H ) /\ ( y =/= 0h /\ z =/= 0h ) ) /\ ( span ` { y } ) =/= ( span ` { z } ) ) -> ( span ` { ( y +h z ) } ) e. HAtoms ) |
27 |
26
|
adantlr |
|- ( ( ( ( ( y e. ~H /\ z e. ~H ) /\ ( y =/= 0h /\ z =/= 0h ) ) /\ ( A = ( span ` { y } ) /\ B = ( span ` { z } ) ) ) /\ ( span ` { y } ) =/= ( span ` { z } ) ) -> ( span ` { ( y +h z ) } ) e. HAtoms ) |
28 |
|
eqeq2 |
|- ( A = ( span ` { y } ) -> ( ( span ` { ( y +h z ) } ) = A <-> ( span ` { ( y +h z ) } ) = ( span ` { y } ) ) ) |
29 |
28
|
biimpd |
|- ( A = ( span ` { y } ) -> ( ( span ` { ( y +h z ) } ) = A -> ( span ` { ( y +h z ) } ) = ( span ` { y } ) ) ) |
30 |
|
spansneleqi |
|- ( ( y +h z ) e. ~H -> ( ( span ` { ( y +h z ) } ) = ( span ` { y } ) -> ( y +h z ) e. ( span ` { y } ) ) ) |
31 |
9 30
|
syl |
|- ( ( y e. ~H /\ z e. ~H ) -> ( ( span ` { ( y +h z ) } ) = ( span ` { y } ) -> ( y +h z ) e. ( span ` { y } ) ) ) |
32 |
|
elspansn |
|- ( y e. ~H -> ( ( y +h z ) e. ( span ` { y } ) <-> E. v e. CC ( y +h z ) = ( v .h y ) ) ) |
33 |
32
|
adantr |
|- ( ( y e. ~H /\ z e. ~H ) -> ( ( y +h z ) e. ( span ` { y } ) <-> E. v e. CC ( y +h z ) = ( v .h y ) ) ) |
34 |
|
addcl |
|- ( ( v e. CC /\ -u 1 e. CC ) -> ( v + -u 1 ) e. CC ) |
35 |
14 34
|
mpan2 |
|- ( v e. CC -> ( v + -u 1 ) e. CC ) |
36 |
35
|
ad2antlr |
|- ( ( ( ( y e. ~H /\ z e. ~H ) /\ v e. CC ) /\ ( y +h z ) = ( v .h y ) ) -> ( v + -u 1 ) e. CC ) |
37 |
|
hvmulcl |
|- ( ( v e. CC /\ y e. ~H ) -> ( v .h y ) e. ~H ) |
38 |
37
|
ancoms |
|- ( ( y e. ~H /\ v e. CC ) -> ( v .h y ) e. ~H ) |
39 |
38
|
adantlr |
|- ( ( ( y e. ~H /\ z e. ~H ) /\ v e. CC ) -> ( v .h y ) e. ~H ) |
40 |
|
simpll |
|- ( ( ( y e. ~H /\ z e. ~H ) /\ v e. CC ) -> y e. ~H ) |
41 |
|
simplr |
|- ( ( ( y e. ~H /\ z e. ~H ) /\ v e. CC ) -> z e. ~H ) |
42 |
|
hvsubadd |
|- ( ( ( v .h y ) e. ~H /\ y e. ~H /\ z e. ~H ) -> ( ( ( v .h y ) -h y ) = z <-> ( y +h z ) = ( v .h y ) ) ) |
43 |
39 40 41 42
|
syl3anc |
|- ( ( ( y e. ~H /\ z e. ~H ) /\ v e. CC ) -> ( ( ( v .h y ) -h y ) = z <-> ( y +h z ) = ( v .h y ) ) ) |
44 |
43
|
biimpar |
|- ( ( ( ( y e. ~H /\ z e. ~H ) /\ v e. CC ) /\ ( y +h z ) = ( v .h y ) ) -> ( ( v .h y ) -h y ) = z ) |
45 |
|
hvsubval |
|- ( ( ( v .h y ) e. ~H /\ y e. ~H ) -> ( ( v .h y ) -h y ) = ( ( v .h y ) +h ( -u 1 .h y ) ) ) |
46 |
37 45
|
sylancom |
|- ( ( v e. CC /\ y e. ~H ) -> ( ( v .h y ) -h y ) = ( ( v .h y ) +h ( -u 1 .h y ) ) ) |
47 |
|
ax-hvdistr2 |
|- ( ( v e. CC /\ -u 1 e. CC /\ y e. ~H ) -> ( ( v + -u 1 ) .h y ) = ( ( v .h y ) +h ( -u 1 .h y ) ) ) |
48 |
14 47
|
mp3an2 |
|- ( ( v e. CC /\ y e. ~H ) -> ( ( v + -u 1 ) .h y ) = ( ( v .h y ) +h ( -u 1 .h y ) ) ) |
49 |
46 48
|
eqtr4d |
|- ( ( v e. CC /\ y e. ~H ) -> ( ( v .h y ) -h y ) = ( ( v + -u 1 ) .h y ) ) |
50 |
49
|
ancoms |
|- ( ( y e. ~H /\ v e. CC ) -> ( ( v .h y ) -h y ) = ( ( v + -u 1 ) .h y ) ) |
51 |
50
|
adantlr |
|- ( ( ( y e. ~H /\ z e. ~H ) /\ v e. CC ) -> ( ( v .h y ) -h y ) = ( ( v + -u 1 ) .h y ) ) |
52 |
51
|
adantr |
|- ( ( ( ( y e. ~H /\ z e. ~H ) /\ v e. CC ) /\ ( y +h z ) = ( v .h y ) ) -> ( ( v .h y ) -h y ) = ( ( v + -u 1 ) .h y ) ) |
53 |
44 52
|
eqtr3d |
|- ( ( ( ( y e. ~H /\ z e. ~H ) /\ v e. CC ) /\ ( y +h z ) = ( v .h y ) ) -> z = ( ( v + -u 1 ) .h y ) ) |
54 |
|
oveq1 |
|- ( w = ( v + -u 1 ) -> ( w .h y ) = ( ( v + -u 1 ) .h y ) ) |
55 |
54
|
rspceeqv |
|- ( ( ( v + -u 1 ) e. CC /\ z = ( ( v + -u 1 ) .h y ) ) -> E. w e. CC z = ( w .h y ) ) |
56 |
36 53 55
|
syl2anc |
|- ( ( ( ( y e. ~H /\ z e. ~H ) /\ v e. CC ) /\ ( y +h z ) = ( v .h y ) ) -> E. w e. CC z = ( w .h y ) ) |
57 |
56
|
rexlimdva2 |
|- ( ( y e. ~H /\ z e. ~H ) -> ( E. v e. CC ( y +h z ) = ( v .h y ) -> E. w e. CC z = ( w .h y ) ) ) |
58 |
33 57
|
sylbid |
|- ( ( y e. ~H /\ z e. ~H ) -> ( ( y +h z ) e. ( span ` { y } ) -> E. w e. CC z = ( w .h y ) ) ) |
59 |
31 58
|
syld |
|- ( ( y e. ~H /\ z e. ~H ) -> ( ( span ` { ( y +h z ) } ) = ( span ` { y } ) -> E. w e. CC z = ( w .h y ) ) ) |
60 |
|
elspansn |
|- ( y e. ~H -> ( z e. ( span ` { y } ) <-> E. w e. CC z = ( w .h y ) ) ) |
61 |
60
|
adantr |
|- ( ( y e. ~H /\ z e. ~H ) -> ( z e. ( span ` { y } ) <-> E. w e. CC z = ( w .h y ) ) ) |
62 |
59 61
|
sylibrd |
|- ( ( y e. ~H /\ z e. ~H ) -> ( ( span ` { ( y +h z ) } ) = ( span ` { y } ) -> z e. ( span ` { y } ) ) ) |
63 |
62
|
adantr |
|- ( ( ( y e. ~H /\ z e. ~H ) /\ z =/= 0h ) -> ( ( span ` { ( y +h z ) } ) = ( span ` { y } ) -> z e. ( span ` { y } ) ) ) |
64 |
|
spansneleq |
|- ( ( y e. ~H /\ z =/= 0h ) -> ( z e. ( span ` { y } ) -> ( span ` { z } ) = ( span ` { y } ) ) ) |
65 |
|
eqcom |
|- ( ( span ` { z } ) = ( span ` { y } ) <-> ( span ` { y } ) = ( span ` { z } ) ) |
66 |
64 65
|
syl6ib |
|- ( ( y e. ~H /\ z =/= 0h ) -> ( z e. ( span ` { y } ) -> ( span ` { y } ) = ( span ` { z } ) ) ) |
67 |
66
|
adantlr |
|- ( ( ( y e. ~H /\ z e. ~H ) /\ z =/= 0h ) -> ( z e. ( span ` { y } ) -> ( span ` { y } ) = ( span ` { z } ) ) ) |
68 |
63 67
|
syld |
|- ( ( ( y e. ~H /\ z e. ~H ) /\ z =/= 0h ) -> ( ( span ` { ( y +h z ) } ) = ( span ` { y } ) -> ( span ` { y } ) = ( span ` { z } ) ) ) |
69 |
29 68
|
sylan9r |
|- ( ( ( ( y e. ~H /\ z e. ~H ) /\ z =/= 0h ) /\ A = ( span ` { y } ) ) -> ( ( span ` { ( y +h z ) } ) = A -> ( span ` { y } ) = ( span ` { z } ) ) ) |
70 |
69
|
necon3d |
|- ( ( ( ( y e. ~H /\ z e. ~H ) /\ z =/= 0h ) /\ A = ( span ` { y } ) ) -> ( ( span ` { y } ) =/= ( span ` { z } ) -> ( span ` { ( y +h z ) } ) =/= A ) ) |
71 |
70
|
adantlrl |
|- ( ( ( ( y e. ~H /\ z e. ~H ) /\ ( y =/= 0h /\ z =/= 0h ) ) /\ A = ( span ` { y } ) ) -> ( ( span ` { y } ) =/= ( span ` { z } ) -> ( span ` { ( y +h z ) } ) =/= A ) ) |
72 |
71
|
adantrr |
|- ( ( ( ( y e. ~H /\ z e. ~H ) /\ ( y =/= 0h /\ z =/= 0h ) ) /\ ( A = ( span ` { y } ) /\ B = ( span ` { z } ) ) ) -> ( ( span ` { y } ) =/= ( span ` { z } ) -> ( span ` { ( y +h z ) } ) =/= A ) ) |
73 |
72
|
imp |
|- ( ( ( ( ( y e. ~H /\ z e. ~H ) /\ ( y =/= 0h /\ z =/= 0h ) ) /\ ( A = ( span ` { y } ) /\ B = ( span ` { z } ) ) ) /\ ( span ` { y } ) =/= ( span ` { z } ) ) -> ( span ` { ( y +h z ) } ) =/= A ) |
74 |
|
eqeq2 |
|- ( B = ( span ` { z } ) -> ( ( span ` { ( y +h z ) } ) = B <-> ( span ` { ( y +h z ) } ) = ( span ` { z } ) ) ) |
75 |
74
|
biimpd |
|- ( B = ( span ` { z } ) -> ( ( span ` { ( y +h z ) } ) = B -> ( span ` { ( y +h z ) } ) = ( span ` { z } ) ) ) |
76 |
|
spansneleqi |
|- ( ( y +h z ) e. ~H -> ( ( span ` { ( y +h z ) } ) = ( span ` { z } ) -> ( y +h z ) e. ( span ` { z } ) ) ) |
77 |
9 76
|
syl |
|- ( ( y e. ~H /\ z e. ~H ) -> ( ( span ` { ( y +h z ) } ) = ( span ` { z } ) -> ( y +h z ) e. ( span ` { z } ) ) ) |
78 |
|
elspansn |
|- ( z e. ~H -> ( ( y +h z ) e. ( span ` { z } ) <-> E. v e. CC ( y +h z ) = ( v .h z ) ) ) |
79 |
78
|
adantl |
|- ( ( y e. ~H /\ z e. ~H ) -> ( ( y +h z ) e. ( span ` { z } ) <-> E. v e. CC ( y +h z ) = ( v .h z ) ) ) |
80 |
35
|
ad2antlr |
|- ( ( ( ( y e. ~H /\ z e. ~H ) /\ v e. CC ) /\ ( y +h z ) = ( v .h z ) ) -> ( v + -u 1 ) e. CC ) |
81 |
|
hvmulcl |
|- ( ( v e. CC /\ z e. ~H ) -> ( v .h z ) e. ~H ) |
82 |
81
|
ancoms |
|- ( ( z e. ~H /\ v e. CC ) -> ( v .h z ) e. ~H ) |
83 |
82
|
adantll |
|- ( ( ( y e. ~H /\ z e. ~H ) /\ v e. CC ) -> ( v .h z ) e. ~H ) |
84 |
|
hvsubadd |
|- ( ( ( v .h z ) e. ~H /\ z e. ~H /\ y e. ~H ) -> ( ( ( v .h z ) -h z ) = y <-> ( z +h y ) = ( v .h z ) ) ) |
85 |
83 41 40 84
|
syl3anc |
|- ( ( ( y e. ~H /\ z e. ~H ) /\ v e. CC ) -> ( ( ( v .h z ) -h z ) = y <-> ( z +h y ) = ( v .h z ) ) ) |
86 |
|
ax-hvcom |
|- ( ( y e. ~H /\ z e. ~H ) -> ( y +h z ) = ( z +h y ) ) |
87 |
86
|
adantr |
|- ( ( ( y e. ~H /\ z e. ~H ) /\ v e. CC ) -> ( y +h z ) = ( z +h y ) ) |
88 |
87
|
eqeq1d |
|- ( ( ( y e. ~H /\ z e. ~H ) /\ v e. CC ) -> ( ( y +h z ) = ( v .h z ) <-> ( z +h y ) = ( v .h z ) ) ) |
89 |
85 88
|
bitr4d |
|- ( ( ( y e. ~H /\ z e. ~H ) /\ v e. CC ) -> ( ( ( v .h z ) -h z ) = y <-> ( y +h z ) = ( v .h z ) ) ) |
90 |
89
|
biimpar |
|- ( ( ( ( y e. ~H /\ z e. ~H ) /\ v e. CC ) /\ ( y +h z ) = ( v .h z ) ) -> ( ( v .h z ) -h z ) = y ) |
91 |
|
hvsubval |
|- ( ( ( v .h z ) e. ~H /\ z e. ~H ) -> ( ( v .h z ) -h z ) = ( ( v .h z ) +h ( -u 1 .h z ) ) ) |
92 |
81 91
|
sylancom |
|- ( ( v e. CC /\ z e. ~H ) -> ( ( v .h z ) -h z ) = ( ( v .h z ) +h ( -u 1 .h z ) ) ) |
93 |
|
ax-hvdistr2 |
|- ( ( v e. CC /\ -u 1 e. CC /\ z e. ~H ) -> ( ( v + -u 1 ) .h z ) = ( ( v .h z ) +h ( -u 1 .h z ) ) ) |
94 |
14 93
|
mp3an2 |
|- ( ( v e. CC /\ z e. ~H ) -> ( ( v + -u 1 ) .h z ) = ( ( v .h z ) +h ( -u 1 .h z ) ) ) |
95 |
92 94
|
eqtr4d |
|- ( ( v e. CC /\ z e. ~H ) -> ( ( v .h z ) -h z ) = ( ( v + -u 1 ) .h z ) ) |
96 |
95
|
ancoms |
|- ( ( z e. ~H /\ v e. CC ) -> ( ( v .h z ) -h z ) = ( ( v + -u 1 ) .h z ) ) |
97 |
96
|
adantll |
|- ( ( ( y e. ~H /\ z e. ~H ) /\ v e. CC ) -> ( ( v .h z ) -h z ) = ( ( v + -u 1 ) .h z ) ) |
98 |
97
|
adantr |
|- ( ( ( ( y e. ~H /\ z e. ~H ) /\ v e. CC ) /\ ( y +h z ) = ( v .h z ) ) -> ( ( v .h z ) -h z ) = ( ( v + -u 1 ) .h z ) ) |
99 |
90 98
|
eqtr3d |
|- ( ( ( ( y e. ~H /\ z e. ~H ) /\ v e. CC ) /\ ( y +h z ) = ( v .h z ) ) -> y = ( ( v + -u 1 ) .h z ) ) |
100 |
|
oveq1 |
|- ( w = ( v + -u 1 ) -> ( w .h z ) = ( ( v + -u 1 ) .h z ) ) |
101 |
100
|
rspceeqv |
|- ( ( ( v + -u 1 ) e. CC /\ y = ( ( v + -u 1 ) .h z ) ) -> E. w e. CC y = ( w .h z ) ) |
102 |
80 99 101
|
syl2anc |
|- ( ( ( ( y e. ~H /\ z e. ~H ) /\ v e. CC ) /\ ( y +h z ) = ( v .h z ) ) -> E. w e. CC y = ( w .h z ) ) |
103 |
102
|
rexlimdva2 |
|- ( ( y e. ~H /\ z e. ~H ) -> ( E. v e. CC ( y +h z ) = ( v .h z ) -> E. w e. CC y = ( w .h z ) ) ) |
104 |
79 103
|
sylbid |
|- ( ( y e. ~H /\ z e. ~H ) -> ( ( y +h z ) e. ( span ` { z } ) -> E. w e. CC y = ( w .h z ) ) ) |
105 |
77 104
|
syld |
|- ( ( y e. ~H /\ z e. ~H ) -> ( ( span ` { ( y +h z ) } ) = ( span ` { z } ) -> E. w e. CC y = ( w .h z ) ) ) |
106 |
|
elspansn |
|- ( z e. ~H -> ( y e. ( span ` { z } ) <-> E. w e. CC y = ( w .h z ) ) ) |
107 |
106
|
adantl |
|- ( ( y e. ~H /\ z e. ~H ) -> ( y e. ( span ` { z } ) <-> E. w e. CC y = ( w .h z ) ) ) |
108 |
105 107
|
sylibrd |
|- ( ( y e. ~H /\ z e. ~H ) -> ( ( span ` { ( y +h z ) } ) = ( span ` { z } ) -> y e. ( span ` { z } ) ) ) |
109 |
108
|
adantr |
|- ( ( ( y e. ~H /\ z e. ~H ) /\ y =/= 0h ) -> ( ( span ` { ( y +h z ) } ) = ( span ` { z } ) -> y e. ( span ` { z } ) ) ) |
110 |
|
spansneleq |
|- ( ( z e. ~H /\ y =/= 0h ) -> ( y e. ( span ` { z } ) -> ( span ` { y } ) = ( span ` { z } ) ) ) |
111 |
110
|
adantll |
|- ( ( ( y e. ~H /\ z e. ~H ) /\ y =/= 0h ) -> ( y e. ( span ` { z } ) -> ( span ` { y } ) = ( span ` { z } ) ) ) |
112 |
109 111
|
syld |
|- ( ( ( y e. ~H /\ z e. ~H ) /\ y =/= 0h ) -> ( ( span ` { ( y +h z ) } ) = ( span ` { z } ) -> ( span ` { y } ) = ( span ` { z } ) ) ) |
113 |
75 112
|
sylan9r |
|- ( ( ( ( y e. ~H /\ z e. ~H ) /\ y =/= 0h ) /\ B = ( span ` { z } ) ) -> ( ( span ` { ( y +h z ) } ) = B -> ( span ` { y } ) = ( span ` { z } ) ) ) |
114 |
113
|
necon3d |
|- ( ( ( ( y e. ~H /\ z e. ~H ) /\ y =/= 0h ) /\ B = ( span ` { z } ) ) -> ( ( span ` { y } ) =/= ( span ` { z } ) -> ( span ` { ( y +h z ) } ) =/= B ) ) |
115 |
114
|
adantlrr |
|- ( ( ( ( y e. ~H /\ z e. ~H ) /\ ( y =/= 0h /\ z =/= 0h ) ) /\ B = ( span ` { z } ) ) -> ( ( span ` { y } ) =/= ( span ` { z } ) -> ( span ` { ( y +h z ) } ) =/= B ) ) |
116 |
115
|
adantrl |
|- ( ( ( ( y e. ~H /\ z e. ~H ) /\ ( y =/= 0h /\ z =/= 0h ) ) /\ ( A = ( span ` { y } ) /\ B = ( span ` { z } ) ) ) -> ( ( span ` { y } ) =/= ( span ` { z } ) -> ( span ` { ( y +h z ) } ) =/= B ) ) |
117 |
116
|
imp |
|- ( ( ( ( ( y e. ~H /\ z e. ~H ) /\ ( y =/= 0h /\ z =/= 0h ) ) /\ ( A = ( span ` { y } ) /\ B = ( span ` { z } ) ) ) /\ ( span ` { y } ) =/= ( span ` { z } ) ) -> ( span ` { ( y +h z ) } ) =/= B ) |
118 |
|
spanpr |
|- ( ( y e. ~H /\ z e. ~H ) -> ( span ` { ( y +h z ) } ) C_ ( span ` { y , z } ) ) |
119 |
118
|
adantr |
|- ( ( ( y e. ~H /\ z e. ~H ) /\ ( A = ( span ` { y } ) /\ B = ( span ` { z } ) ) ) -> ( span ` { ( y +h z ) } ) C_ ( span ` { y , z } ) ) |
120 |
|
oveq12 |
|- ( ( A = ( span ` { y } ) /\ B = ( span ` { z } ) ) -> ( A vH B ) = ( ( span ` { y } ) vH ( span ` { z } ) ) ) |
121 |
|
df-pr |
|- { y , z } = ( { y } u. { z } ) |
122 |
121
|
fveq2i |
|- ( span ` { y , z } ) = ( span ` ( { y } u. { z } ) ) |
123 |
|
snssi |
|- ( y e. ~H -> { y } C_ ~H ) |
124 |
|
snssi |
|- ( z e. ~H -> { z } C_ ~H ) |
125 |
|
spanun |
|- ( ( { y } C_ ~H /\ { z } C_ ~H ) -> ( span ` ( { y } u. { z } ) ) = ( ( span ` { y } ) +H ( span ` { z } ) ) ) |
126 |
123 124 125
|
syl2an |
|- ( ( y e. ~H /\ z e. ~H ) -> ( span ` ( { y } u. { z } ) ) = ( ( span ` { y } ) +H ( span ` { z } ) ) ) |
127 |
122 126
|
syl5eq |
|- ( ( y e. ~H /\ z e. ~H ) -> ( span ` { y , z } ) = ( ( span ` { y } ) +H ( span ` { z } ) ) ) |
128 |
|
spansnch |
|- ( y e. ~H -> ( span ` { y } ) e. CH ) |
129 |
|
spansnj |
|- ( ( ( span ` { y } ) e. CH /\ z e. ~H ) -> ( ( span ` { y } ) +H ( span ` { z } ) ) = ( ( span ` { y } ) vH ( span ` { z } ) ) ) |
130 |
128 129
|
sylan |
|- ( ( y e. ~H /\ z e. ~H ) -> ( ( span ` { y } ) +H ( span ` { z } ) ) = ( ( span ` { y } ) vH ( span ` { z } ) ) ) |
131 |
127 130
|
eqtr2d |
|- ( ( y e. ~H /\ z e. ~H ) -> ( ( span ` { y } ) vH ( span ` { z } ) ) = ( span ` { y , z } ) ) |
132 |
120 131
|
sylan9eqr |
|- ( ( ( y e. ~H /\ z e. ~H ) /\ ( A = ( span ` { y } ) /\ B = ( span ` { z } ) ) ) -> ( A vH B ) = ( span ` { y , z } ) ) |
133 |
119 132
|
sseqtrrd |
|- ( ( ( y e. ~H /\ z e. ~H ) /\ ( A = ( span ` { y } ) /\ B = ( span ` { z } ) ) ) -> ( span ` { ( y +h z ) } ) C_ ( A vH B ) ) |
134 |
133
|
adantlr |
|- ( ( ( ( y e. ~H /\ z e. ~H ) /\ ( y =/= 0h /\ z =/= 0h ) ) /\ ( A = ( span ` { y } ) /\ B = ( span ` { z } ) ) ) -> ( span ` { ( y +h z ) } ) C_ ( A vH B ) ) |
135 |
134
|
adantr |
|- ( ( ( ( ( y e. ~H /\ z e. ~H ) /\ ( y =/= 0h /\ z =/= 0h ) ) /\ ( A = ( span ` { y } ) /\ B = ( span ` { z } ) ) ) /\ ( span ` { y } ) =/= ( span ` { z } ) ) -> ( span ` { ( y +h z ) } ) C_ ( A vH B ) ) |
136 |
|
neeq1 |
|- ( x = ( span ` { ( y +h z ) } ) -> ( x =/= A <-> ( span ` { ( y +h z ) } ) =/= A ) ) |
137 |
|
neeq1 |
|- ( x = ( span ` { ( y +h z ) } ) -> ( x =/= B <-> ( span ` { ( y +h z ) } ) =/= B ) ) |
138 |
|
sseq1 |
|- ( x = ( span ` { ( y +h z ) } ) -> ( x C_ ( A vH B ) <-> ( span ` { ( y +h z ) } ) C_ ( A vH B ) ) ) |
139 |
136 137 138
|
3anbi123d |
|- ( x = ( span ` { ( y +h z ) } ) -> ( ( x =/= A /\ x =/= B /\ x C_ ( A vH B ) ) <-> ( ( span ` { ( y +h z ) } ) =/= A /\ ( span ` { ( y +h z ) } ) =/= B /\ ( span ` { ( y +h z ) } ) C_ ( A vH B ) ) ) ) |
140 |
139
|
rspcev |
|- ( ( ( span ` { ( y +h z ) } ) e. HAtoms /\ ( ( span ` { ( y +h z ) } ) =/= A /\ ( span ` { ( y +h z ) } ) =/= B /\ ( span ` { ( y +h z ) } ) C_ ( A vH B ) ) ) -> E. x e. HAtoms ( x =/= A /\ x =/= B /\ x C_ ( A vH B ) ) ) |
141 |
27 73 117 135 140
|
syl13anc |
|- ( ( ( ( ( y e. ~H /\ z e. ~H ) /\ ( y =/= 0h /\ z =/= 0h ) ) /\ ( A = ( span ` { y } ) /\ B = ( span ` { z } ) ) ) /\ ( span ` { y } ) =/= ( span ` { z } ) ) -> E. x e. HAtoms ( x =/= A /\ x =/= B /\ x C_ ( A vH B ) ) ) |
142 |
141
|
ex |
|- ( ( ( ( y e. ~H /\ z e. ~H ) /\ ( y =/= 0h /\ z =/= 0h ) ) /\ ( A = ( span ` { y } ) /\ B = ( span ` { z } ) ) ) -> ( ( span ` { y } ) =/= ( span ` { z } ) -> E. x e. HAtoms ( x =/= A /\ x =/= B /\ x C_ ( A vH B ) ) ) ) |
143 |
8 142
|
sylbid |
|- ( ( ( ( y e. ~H /\ z e. ~H ) /\ ( y =/= 0h /\ z =/= 0h ) ) /\ ( A = ( span ` { y } ) /\ B = ( span ` { z } ) ) ) -> ( A =/= B -> E. x e. HAtoms ( x =/= A /\ x =/= B /\ x C_ ( A vH B ) ) ) ) |
144 |
143
|
expl |
|- ( ( y e. ~H /\ z e. ~H ) -> ( ( ( y =/= 0h /\ z =/= 0h ) /\ ( A = ( span ` { y } ) /\ B = ( span ` { z } ) ) ) -> ( A =/= B -> E. x e. HAtoms ( x =/= A /\ x =/= B /\ x C_ ( A vH B ) ) ) ) ) |
145 |
4 144
|
syl5bi |
|- ( ( y e. ~H /\ z e. ~H ) -> ( ( ( y =/= 0h /\ A = ( span ` { y } ) ) /\ ( z =/= 0h /\ B = ( span ` { z } ) ) ) -> ( A =/= B -> E. x e. HAtoms ( x =/= A /\ x =/= B /\ x C_ ( A vH B ) ) ) ) ) |
146 |
145
|
rexlimivv |
|- ( E. y e. ~H E. z e. ~H ( ( y =/= 0h /\ A = ( span ` { y } ) ) /\ ( z =/= 0h /\ B = ( span ` { z } ) ) ) -> ( A =/= B -> E. x e. HAtoms ( x =/= A /\ x =/= B /\ x C_ ( A vH B ) ) ) ) |
147 |
3 146
|
sylbir |
|- ( ( E. y e. ~H ( y =/= 0h /\ A = ( span ` { y } ) ) /\ E. z e. ~H ( z =/= 0h /\ B = ( span ` { z } ) ) ) -> ( A =/= B -> E. x e. HAtoms ( x =/= A /\ x =/= B /\ x C_ ( A vH B ) ) ) ) |
148 |
1 2 147
|
syl2anb |
|- ( ( A e. HAtoms /\ B e. HAtoms ) -> ( A =/= B -> E. x e. HAtoms ( x =/= A /\ x =/= B /\ x C_ ( A vH B ) ) ) ) |
149 |
148
|
3impia |
|- ( ( A e. HAtoms /\ B e. HAtoms /\ A =/= B ) -> E. x e. HAtoms ( x =/= A /\ x =/= B /\ x C_ ( A vH B ) ) ) |