| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulcl |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝑦 · 𝐵 ) ∈ ℂ ) |
| 2 |
1
|
ancoms |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑦 · 𝐵 ) ∈ ℂ ) |
| 3 |
2
|
adantll |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℂ ) → ( 𝑦 · 𝐵 ) ∈ ℂ ) |
| 4 |
|
ax-hvmulass |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ ) → ( ( 𝑦 · 𝐵 ) ·ℎ 𝐴 ) = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) |
| 5 |
4
|
3com13 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 𝑦 · 𝐵 ) ·ℎ 𝐴 ) = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) |
| 6 |
5
|
3expa |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℂ ) → ( ( 𝑦 · 𝐵 ) ·ℎ 𝐴 ) = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) |
| 7 |
6
|
eqeq2d |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℂ ) → ( 𝑥 = ( ( 𝑦 · 𝐵 ) ·ℎ 𝐴 ) ↔ 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) ) |
| 8 |
7
|
biimprd |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℂ ) → ( 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) → 𝑥 = ( ( 𝑦 · 𝐵 ) ·ℎ 𝐴 ) ) ) |
| 9 |
|
oveq1 |
⊢ ( 𝑧 = ( 𝑦 · 𝐵 ) → ( 𝑧 ·ℎ 𝐴 ) = ( ( 𝑦 · 𝐵 ) ·ℎ 𝐴 ) ) |
| 10 |
9
|
rspceeqv |
⊢ ( ( ( 𝑦 · 𝐵 ) ∈ ℂ ∧ 𝑥 = ( ( 𝑦 · 𝐵 ) ·ℎ 𝐴 ) ) → ∃ 𝑧 ∈ ℂ 𝑥 = ( 𝑧 ·ℎ 𝐴 ) ) |
| 11 |
3 8 10
|
syl6an |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℂ ) → ( 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) → ∃ 𝑧 ∈ ℂ 𝑥 = ( 𝑧 ·ℎ 𝐴 ) ) ) |
| 12 |
11
|
rexlimdva |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ) → ( ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) → ∃ 𝑧 ∈ ℂ 𝑥 = ( 𝑧 ·ℎ 𝐴 ) ) ) |
| 13 |
12
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) → ∃ 𝑧 ∈ ℂ 𝑥 = ( 𝑧 ·ℎ 𝐴 ) ) ) |
| 14 |
|
divcl |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝑧 / 𝐵 ) ∈ ℂ ) |
| 15 |
14
|
3expb |
⊢ ( ( 𝑧 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 𝑧 / 𝐵 ) ∈ ℂ ) |
| 16 |
15
|
adantlr |
⊢ ( ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 𝑧 / 𝐵 ) ∈ ℂ ) |
| 17 |
|
simprl |
⊢ ( ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → 𝐵 ∈ ℂ ) |
| 18 |
|
simplr |
⊢ ( ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → 𝐴 ∈ ℋ ) |
| 19 |
|
ax-hvmulass |
⊢ ( ( ( 𝑧 / 𝐵 ) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ ) → ( ( ( 𝑧 / 𝐵 ) · 𝐵 ) ·ℎ 𝐴 ) = ( ( 𝑧 / 𝐵 ) ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) |
| 20 |
16 17 18 19
|
syl3anc |
⊢ ( ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( ( 𝑧 / 𝐵 ) · 𝐵 ) ·ℎ 𝐴 ) = ( ( 𝑧 / 𝐵 ) ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) |
| 21 |
|
divcan1 |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( 𝑧 / 𝐵 ) · 𝐵 ) = 𝑧 ) |
| 22 |
21
|
3expb |
⊢ ( ( 𝑧 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝑧 / 𝐵 ) · 𝐵 ) = 𝑧 ) |
| 23 |
22
|
adantlr |
⊢ ( ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝑧 / 𝐵 ) · 𝐵 ) = 𝑧 ) |
| 24 |
23
|
oveq1d |
⊢ ( ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( ( 𝑧 / 𝐵 ) · 𝐵 ) ·ℎ 𝐴 ) = ( 𝑧 ·ℎ 𝐴 ) ) |
| 25 |
20 24
|
eqtr3d |
⊢ ( ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝑧 / 𝐵 ) ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) = ( 𝑧 ·ℎ 𝐴 ) ) |
| 26 |
25
|
eqeq2d |
⊢ ( ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 𝑥 = ( ( 𝑧 / 𝐵 ) ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ↔ 𝑥 = ( 𝑧 ·ℎ 𝐴 ) ) ) |
| 27 |
26
|
biimprd |
⊢ ( ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 𝑥 = ( 𝑧 ·ℎ 𝐴 ) → 𝑥 = ( ( 𝑧 / 𝐵 ) ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) ) |
| 28 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝑧 / 𝐵 ) → ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) = ( ( 𝑧 / 𝐵 ) ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) |
| 29 |
28
|
rspceeqv |
⊢ ( ( ( 𝑧 / 𝐵 ) ∈ ℂ ∧ 𝑥 = ( ( 𝑧 / 𝐵 ) ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) → ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) |
| 30 |
16 27 29
|
syl6an |
⊢ ( ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 𝑥 = ( 𝑧 ·ℎ 𝐴 ) → ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) ) |
| 31 |
30
|
exp43 |
⊢ ( 𝑧 ∈ ℂ → ( 𝐴 ∈ ℋ → ( 𝐵 ∈ ℂ → ( 𝐵 ≠ 0 → ( 𝑥 = ( 𝑧 ·ℎ 𝐴 ) → ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) ) ) ) ) |
| 32 |
31
|
com4l |
⊢ ( 𝐴 ∈ ℋ → ( 𝐵 ∈ ℂ → ( 𝐵 ≠ 0 → ( 𝑧 ∈ ℂ → ( 𝑥 = ( 𝑧 ·ℎ 𝐴 ) → ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) ) ) ) ) |
| 33 |
32
|
3imp |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝑧 ∈ ℂ → ( 𝑥 = ( 𝑧 ·ℎ 𝐴 ) → ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) ) ) |
| 34 |
33
|
rexlimdv |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ∃ 𝑧 ∈ ℂ 𝑥 = ( 𝑧 ·ℎ 𝐴 ) → ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) ) |
| 35 |
13 34
|
impbid |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ↔ ∃ 𝑧 ∈ ℂ 𝑥 = ( 𝑧 ·ℎ 𝐴 ) ) ) |
| 36 |
|
hvmulcl |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ ) → ( 𝐵 ·ℎ 𝐴 ) ∈ ℋ ) |
| 37 |
36
|
ancoms |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 ·ℎ 𝐴 ) ∈ ℋ ) |
| 38 |
|
elspansn |
⊢ ( ( 𝐵 ·ℎ 𝐴 ) ∈ ℋ → ( 𝑥 ∈ ( span ‘ { ( 𝐵 ·ℎ 𝐴 ) } ) ↔ ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) ) |
| 39 |
37 38
|
syl |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ) → ( 𝑥 ∈ ( span ‘ { ( 𝐵 ·ℎ 𝐴 ) } ) ↔ ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) ) |
| 40 |
39
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝑥 ∈ ( span ‘ { ( 𝐵 ·ℎ 𝐴 ) } ) ↔ ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) ) |
| 41 |
|
elspansn |
⊢ ( 𝐴 ∈ ℋ → ( 𝑥 ∈ ( span ‘ { 𝐴 } ) ↔ ∃ 𝑧 ∈ ℂ 𝑥 = ( 𝑧 ·ℎ 𝐴 ) ) ) |
| 42 |
41
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝑥 ∈ ( span ‘ { 𝐴 } ) ↔ ∃ 𝑧 ∈ ℂ 𝑥 = ( 𝑧 ·ℎ 𝐴 ) ) ) |
| 43 |
35 40 42
|
3bitr4d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝑥 ∈ ( span ‘ { ( 𝐵 ·ℎ 𝐴 ) } ) ↔ 𝑥 ∈ ( span ‘ { 𝐴 } ) ) ) |
| 44 |
43
|
eqrdv |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( span ‘ { ( 𝐵 ·ℎ 𝐴 ) } ) = ( span ‘ { 𝐴 } ) ) |