Metamath Proof Explorer


Theorem chirredlem4

Description: Lemma for chirredi . (Contributed by NM, 15-Jun-2006) (New usage is discouraged.)

Ref Expression
Hypotheses chirred.1 A C
chirred.2 x C A 𝐶 x
Assertion chirredlem4 p HAtoms p A q HAtoms q A r HAtoms r p q r = p r = q

Proof

Step Hyp Ref Expression
1 chirred.1 A C
2 chirred.2 x C A 𝐶 x
3 atelch r HAtoms r C
4 breq2 x = r A 𝐶 x A 𝐶 r
5 4 2 vtoclga r C A 𝐶 r
6 3 5 syl r HAtoms A 𝐶 r
7 1 atordi r HAtoms A 𝐶 r r A r A
8 6 7 mpdan r HAtoms r A r A
9 8 ad2antrl p HAtoms p A q HAtoms q A r HAtoms r p q r A r A
10 1 2 chirredlem3 p HAtoms p A q HAtoms q A r HAtoms r p q r A r = p
11 1 ococi A = A
12 11 sseq2i p A p A
13 12 biimpri p A p A
14 atelch q HAtoms q C
15 atelch p HAtoms p C
16 chjcom q C p C q p = p q
17 14 15 16 syl2an q HAtoms p HAtoms q p = p q
18 17 sseq2d q HAtoms p HAtoms r q p r p q
19 18 anbi2d q HAtoms p HAtoms r HAtoms r q p r HAtoms r p q
20 19 ad2ant2r q HAtoms q A p HAtoms p A r HAtoms r q p r HAtoms r p q
21 1 choccli A C
22 cmcm3 A C x C A 𝐶 x A 𝐶 x
23 1 22 mpan x C A 𝐶 x A 𝐶 x
24 2 23 mpbid x C A 𝐶 x
25 21 24 chirredlem3 q HAtoms q A p HAtoms p A r HAtoms r q p r A r = q
26 25 ex q HAtoms q A p HAtoms p A r HAtoms r q p r A r = q
27 20 26 sylbird q HAtoms q A p HAtoms p A r HAtoms r p q r A r = q
28 13 27 sylanr2 q HAtoms q A p HAtoms p A r HAtoms r p q r A r = q
29 28 imp q HAtoms q A p HAtoms p A r HAtoms r p q r A r = q
30 29 ancom1s p HAtoms p A q HAtoms q A r HAtoms r p q r A r = q
31 10 30 orim12d p HAtoms p A q HAtoms q A r HAtoms r p q r A r A r = p r = q
32 9 31 mpd p HAtoms p A q HAtoms q A r HAtoms r p q r = p r = q