Metamath Proof Explorer


Theorem chirredlem4

Description: Lemma for chirredi . (Contributed by NM, 15-Jun-2006) (New usage is discouraged.)

Ref Expression
Hypotheses chirred.1 AC
chirred.2 xCA𝐶x
Assertion chirredlem4 pHAtomspAqHAtomsqArHAtomsrpqr=pr=q

Proof

Step Hyp Ref Expression
1 chirred.1 AC
2 chirred.2 xCA𝐶x
3 atelch rHAtomsrC
4 breq2 x=rA𝐶xA𝐶r
5 4 2 vtoclga rCA𝐶r
6 3 5 syl rHAtomsA𝐶r
7 1 atordi rHAtomsA𝐶rrArA
8 6 7 mpdan rHAtomsrArA
9 8 ad2antrl pHAtomspAqHAtomsqArHAtomsrpqrArA
10 1 2 chirredlem3 pHAtomspAqHAtomsqArHAtomsrpqrAr=p
11 1 ococi A=A
12 11 sseq2i pApA
13 12 biimpri pApA
14 atelch qHAtomsqC
15 atelch pHAtomspC
16 chjcom qCpCqp=pq
17 14 15 16 syl2an qHAtomspHAtomsqp=pq
18 17 sseq2d qHAtomspHAtomsrqprpq
19 18 anbi2d qHAtomspHAtomsrHAtomsrqprHAtomsrpq
20 19 ad2ant2r qHAtomsqApHAtomspArHAtomsrqprHAtomsrpq
21 1 choccli AC
22 cmcm3 ACxCA𝐶xA𝐶x
23 1 22 mpan xCA𝐶xA𝐶x
24 2 23 mpbid xCA𝐶x
25 21 24 chirredlem3 qHAtomsqApHAtomspArHAtomsrqprAr=q
26 25 ex qHAtomsqApHAtomspArHAtomsrqprAr=q
27 20 26 sylbird qHAtomsqApHAtomspArHAtomsrpqrAr=q
28 13 27 sylanr2 qHAtomsqApHAtomspArHAtomsrpqrAr=q
29 28 imp qHAtomsqApHAtomspArHAtomsrpqrAr=q
30 29 ancom1s pHAtomspAqHAtomsqArHAtomsrpqrAr=q
31 10 30 orim12d pHAtomspAqHAtomsqArHAtomsrpqrArAr=pr=q
32 9 31 mpd pHAtomspAqHAtomsqArHAtomsrpqr=pr=q