| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chirred.1 | ⊢ 𝐴  ∈   Cℋ | 
						
							| 2 |  | chirred.2 | ⊢ ( 𝑥  ∈   Cℋ   →  𝐴  𝐶ℋ  𝑥 ) | 
						
							| 3 |  | atelch | ⊢ ( 𝑟  ∈  HAtoms  →  𝑟  ∈   Cℋ  ) | 
						
							| 4 |  | breq2 | ⊢ ( 𝑥  =  𝑟  →  ( 𝐴  𝐶ℋ  𝑥  ↔  𝐴  𝐶ℋ  𝑟 ) ) | 
						
							| 5 | 4 2 | vtoclga | ⊢ ( 𝑟  ∈   Cℋ   →  𝐴  𝐶ℋ  𝑟 ) | 
						
							| 6 | 3 5 | syl | ⊢ ( 𝑟  ∈  HAtoms  →  𝐴  𝐶ℋ  𝑟 ) | 
						
							| 7 | 1 | atordi | ⊢ ( ( 𝑟  ∈  HAtoms  ∧  𝐴  𝐶ℋ  𝑟 )  →  ( 𝑟  ⊆  𝐴  ∨  𝑟  ⊆  ( ⊥ ‘ 𝐴 ) ) ) | 
						
							| 8 | 6 7 | mpdan | ⊢ ( 𝑟  ∈  HAtoms  →  ( 𝑟  ⊆  𝐴  ∨  𝑟  ⊆  ( ⊥ ‘ 𝐴 ) ) ) | 
						
							| 9 | 8 | ad2antrl | ⊢ ( ( ( ( 𝑝  ∈  HAtoms  ∧  𝑝  ⊆  𝐴 )  ∧  ( 𝑞  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝐴 ) ) )  ∧  ( 𝑟  ∈  HAtoms  ∧  𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 ) ) )  →  ( 𝑟  ⊆  𝐴  ∨  𝑟  ⊆  ( ⊥ ‘ 𝐴 ) ) ) | 
						
							| 10 | 1 2 | chirredlem3 | ⊢ ( ( ( ( 𝑝  ∈  HAtoms  ∧  𝑝  ⊆  𝐴 )  ∧  ( 𝑞  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝐴 ) ) )  ∧  ( 𝑟  ∈  HAtoms  ∧  𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 ) ) )  →  ( 𝑟  ⊆  𝐴  →  𝑟  =  𝑝 ) ) | 
						
							| 11 | 1 | ococi | ⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) )  =  𝐴 | 
						
							| 12 | 11 | sseq2i | ⊢ ( 𝑝  ⊆  ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) )  ↔  𝑝  ⊆  𝐴 ) | 
						
							| 13 | 12 | biimpri | ⊢ ( 𝑝  ⊆  𝐴  →  𝑝  ⊆  ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) | 
						
							| 14 |  | atelch | ⊢ ( 𝑞  ∈  HAtoms  →  𝑞  ∈   Cℋ  ) | 
						
							| 15 |  | atelch | ⊢ ( 𝑝  ∈  HAtoms  →  𝑝  ∈   Cℋ  ) | 
						
							| 16 |  | chjcom | ⊢ ( ( 𝑞  ∈   Cℋ   ∧  𝑝  ∈   Cℋ  )  →  ( 𝑞  ∨ℋ  𝑝 )  =  ( 𝑝  ∨ℋ  𝑞 ) ) | 
						
							| 17 | 14 15 16 | syl2an | ⊢ ( ( 𝑞  ∈  HAtoms  ∧  𝑝  ∈  HAtoms )  →  ( 𝑞  ∨ℋ  𝑝 )  =  ( 𝑝  ∨ℋ  𝑞 ) ) | 
						
							| 18 | 17 | sseq2d | ⊢ ( ( 𝑞  ∈  HAtoms  ∧  𝑝  ∈  HAtoms )  →  ( 𝑟  ⊆  ( 𝑞  ∨ℋ  𝑝 )  ↔  𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 ) ) ) | 
						
							| 19 | 18 | anbi2d | ⊢ ( ( 𝑞  ∈  HAtoms  ∧  𝑝  ∈  HAtoms )  →  ( ( 𝑟  ∈  HAtoms  ∧  𝑟  ⊆  ( 𝑞  ∨ℋ  𝑝 ) )  ↔  ( 𝑟  ∈  HAtoms  ∧  𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 ) ) ) ) | 
						
							| 20 | 19 | ad2ant2r | ⊢ ( ( ( 𝑞  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝐴 ) )  ∧  ( 𝑝  ∈  HAtoms  ∧  𝑝  ⊆  ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) )  →  ( ( 𝑟  ∈  HAtoms  ∧  𝑟  ⊆  ( 𝑞  ∨ℋ  𝑝 ) )  ↔  ( 𝑟  ∈  HAtoms  ∧  𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 ) ) ) ) | 
						
							| 21 | 1 | choccli | ⊢ ( ⊥ ‘ 𝐴 )  ∈   Cℋ | 
						
							| 22 |  | cmcm3 | ⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝑥  ∈   Cℋ  )  →  ( 𝐴  𝐶ℋ  𝑥  ↔  ( ⊥ ‘ 𝐴 )  𝐶ℋ  𝑥 ) ) | 
						
							| 23 | 1 22 | mpan | ⊢ ( 𝑥  ∈   Cℋ   →  ( 𝐴  𝐶ℋ  𝑥  ↔  ( ⊥ ‘ 𝐴 )  𝐶ℋ  𝑥 ) ) | 
						
							| 24 | 2 23 | mpbid | ⊢ ( 𝑥  ∈   Cℋ   →  ( ⊥ ‘ 𝐴 )  𝐶ℋ  𝑥 ) | 
						
							| 25 | 21 24 | chirredlem3 | ⊢ ( ( ( ( 𝑞  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝐴 ) )  ∧  ( 𝑝  ∈  HAtoms  ∧  𝑝  ⊆  ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) )  ∧  ( 𝑟  ∈  HAtoms  ∧  𝑟  ⊆  ( 𝑞  ∨ℋ  𝑝 ) ) )  →  ( 𝑟  ⊆  ( ⊥ ‘ 𝐴 )  →  𝑟  =  𝑞 ) ) | 
						
							| 26 | 25 | ex | ⊢ ( ( ( 𝑞  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝐴 ) )  ∧  ( 𝑝  ∈  HAtoms  ∧  𝑝  ⊆  ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) )  →  ( ( 𝑟  ∈  HAtoms  ∧  𝑟  ⊆  ( 𝑞  ∨ℋ  𝑝 ) )  →  ( 𝑟  ⊆  ( ⊥ ‘ 𝐴 )  →  𝑟  =  𝑞 ) ) ) | 
						
							| 27 | 20 26 | sylbird | ⊢ ( ( ( 𝑞  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝐴 ) )  ∧  ( 𝑝  ∈  HAtoms  ∧  𝑝  ⊆  ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) )  →  ( ( 𝑟  ∈  HAtoms  ∧  𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 ) )  →  ( 𝑟  ⊆  ( ⊥ ‘ 𝐴 )  →  𝑟  =  𝑞 ) ) ) | 
						
							| 28 | 13 27 | sylanr2 | ⊢ ( ( ( 𝑞  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝐴 ) )  ∧  ( 𝑝  ∈  HAtoms  ∧  𝑝  ⊆  𝐴 ) )  →  ( ( 𝑟  ∈  HAtoms  ∧  𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 ) )  →  ( 𝑟  ⊆  ( ⊥ ‘ 𝐴 )  →  𝑟  =  𝑞 ) ) ) | 
						
							| 29 | 28 | imp | ⊢ ( ( ( ( 𝑞  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝐴 ) )  ∧  ( 𝑝  ∈  HAtoms  ∧  𝑝  ⊆  𝐴 ) )  ∧  ( 𝑟  ∈  HAtoms  ∧  𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 ) ) )  →  ( 𝑟  ⊆  ( ⊥ ‘ 𝐴 )  →  𝑟  =  𝑞 ) ) | 
						
							| 30 | 29 | ancom1s | ⊢ ( ( ( ( 𝑝  ∈  HAtoms  ∧  𝑝  ⊆  𝐴 )  ∧  ( 𝑞  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝐴 ) ) )  ∧  ( 𝑟  ∈  HAtoms  ∧  𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 ) ) )  →  ( 𝑟  ⊆  ( ⊥ ‘ 𝐴 )  →  𝑟  =  𝑞 ) ) | 
						
							| 31 | 10 30 | orim12d | ⊢ ( ( ( ( 𝑝  ∈  HAtoms  ∧  𝑝  ⊆  𝐴 )  ∧  ( 𝑞  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝐴 ) ) )  ∧  ( 𝑟  ∈  HAtoms  ∧  𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 ) ) )  →  ( ( 𝑟  ⊆  𝐴  ∨  𝑟  ⊆  ( ⊥ ‘ 𝐴 ) )  →  ( 𝑟  =  𝑝  ∨  𝑟  =  𝑞 ) ) ) | 
						
							| 32 | 9 31 | mpd | ⊢ ( ( ( ( 𝑝  ∈  HAtoms  ∧  𝑝  ⊆  𝐴 )  ∧  ( 𝑞  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝐴 ) ) )  ∧  ( 𝑟  ∈  HAtoms  ∧  𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 ) ) )  →  ( 𝑟  =  𝑝  ∨  𝑟  =  𝑞 ) ) |