| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chirred.1 |
|- A e. CH |
| 2 |
|
chirred.2 |
|- ( x e. CH -> A C_H x ) |
| 3 |
|
atelch |
|- ( r e. HAtoms -> r e. CH ) |
| 4 |
|
breq2 |
|- ( x = r -> ( A C_H x <-> A C_H r ) ) |
| 5 |
4 2
|
vtoclga |
|- ( r e. CH -> A C_H r ) |
| 6 |
3 5
|
syl |
|- ( r e. HAtoms -> A C_H r ) |
| 7 |
1
|
atordi |
|- ( ( r e. HAtoms /\ A C_H r ) -> ( r C_ A \/ r C_ ( _|_ ` A ) ) ) |
| 8 |
6 7
|
mpdan |
|- ( r e. HAtoms -> ( r C_ A \/ r C_ ( _|_ ` A ) ) ) |
| 9 |
8
|
ad2antrl |
|- ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) ) /\ ( r e. HAtoms /\ r C_ ( p vH q ) ) ) -> ( r C_ A \/ r C_ ( _|_ ` A ) ) ) |
| 10 |
1 2
|
chirredlem3 |
|- ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) ) /\ ( r e. HAtoms /\ r C_ ( p vH q ) ) ) -> ( r C_ A -> r = p ) ) |
| 11 |
1
|
ococi |
|- ( _|_ ` ( _|_ ` A ) ) = A |
| 12 |
11
|
sseq2i |
|- ( p C_ ( _|_ ` ( _|_ ` A ) ) <-> p C_ A ) |
| 13 |
12
|
biimpri |
|- ( p C_ A -> p C_ ( _|_ ` ( _|_ ` A ) ) ) |
| 14 |
|
atelch |
|- ( q e. HAtoms -> q e. CH ) |
| 15 |
|
atelch |
|- ( p e. HAtoms -> p e. CH ) |
| 16 |
|
chjcom |
|- ( ( q e. CH /\ p e. CH ) -> ( q vH p ) = ( p vH q ) ) |
| 17 |
14 15 16
|
syl2an |
|- ( ( q e. HAtoms /\ p e. HAtoms ) -> ( q vH p ) = ( p vH q ) ) |
| 18 |
17
|
sseq2d |
|- ( ( q e. HAtoms /\ p e. HAtoms ) -> ( r C_ ( q vH p ) <-> r C_ ( p vH q ) ) ) |
| 19 |
18
|
anbi2d |
|- ( ( q e. HAtoms /\ p e. HAtoms ) -> ( ( r e. HAtoms /\ r C_ ( q vH p ) ) <-> ( r e. HAtoms /\ r C_ ( p vH q ) ) ) ) |
| 20 |
19
|
ad2ant2r |
|- ( ( ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) /\ ( p e. HAtoms /\ p C_ ( _|_ ` ( _|_ ` A ) ) ) ) -> ( ( r e. HAtoms /\ r C_ ( q vH p ) ) <-> ( r e. HAtoms /\ r C_ ( p vH q ) ) ) ) |
| 21 |
1
|
choccli |
|- ( _|_ ` A ) e. CH |
| 22 |
|
cmcm3 |
|- ( ( A e. CH /\ x e. CH ) -> ( A C_H x <-> ( _|_ ` A ) C_H x ) ) |
| 23 |
1 22
|
mpan |
|- ( x e. CH -> ( A C_H x <-> ( _|_ ` A ) C_H x ) ) |
| 24 |
2 23
|
mpbid |
|- ( x e. CH -> ( _|_ ` A ) C_H x ) |
| 25 |
21 24
|
chirredlem3 |
|- ( ( ( ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) /\ ( p e. HAtoms /\ p C_ ( _|_ ` ( _|_ ` A ) ) ) ) /\ ( r e. HAtoms /\ r C_ ( q vH p ) ) ) -> ( r C_ ( _|_ ` A ) -> r = q ) ) |
| 26 |
25
|
ex |
|- ( ( ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) /\ ( p e. HAtoms /\ p C_ ( _|_ ` ( _|_ ` A ) ) ) ) -> ( ( r e. HAtoms /\ r C_ ( q vH p ) ) -> ( r C_ ( _|_ ` A ) -> r = q ) ) ) |
| 27 |
20 26
|
sylbird |
|- ( ( ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) /\ ( p e. HAtoms /\ p C_ ( _|_ ` ( _|_ ` A ) ) ) ) -> ( ( r e. HAtoms /\ r C_ ( p vH q ) ) -> ( r C_ ( _|_ ` A ) -> r = q ) ) ) |
| 28 |
13 27
|
sylanr2 |
|- ( ( ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) /\ ( p e. HAtoms /\ p C_ A ) ) -> ( ( r e. HAtoms /\ r C_ ( p vH q ) ) -> ( r C_ ( _|_ ` A ) -> r = q ) ) ) |
| 29 |
28
|
imp |
|- ( ( ( ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) /\ ( p e. HAtoms /\ p C_ A ) ) /\ ( r e. HAtoms /\ r C_ ( p vH q ) ) ) -> ( r C_ ( _|_ ` A ) -> r = q ) ) |
| 30 |
29
|
ancom1s |
|- ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) ) /\ ( r e. HAtoms /\ r C_ ( p vH q ) ) ) -> ( r C_ ( _|_ ` A ) -> r = q ) ) |
| 31 |
10 30
|
orim12d |
|- ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) ) /\ ( r e. HAtoms /\ r C_ ( p vH q ) ) ) -> ( ( r C_ A \/ r C_ ( _|_ ` A ) ) -> ( r = p \/ r = q ) ) ) |
| 32 |
9 31
|
mpd |
|- ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) ) /\ ( r e. HAtoms /\ r C_ ( p vH q ) ) ) -> ( r = p \/ r = q ) ) |