| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chirred.1 |  |-  A e. CH | 
						
							| 2 |  | chirred.2 |  |-  ( x e. CH -> A C_H x ) | 
						
							| 3 |  | atelch |  |-  ( r e. HAtoms -> r e. CH ) | 
						
							| 4 |  | breq2 |  |-  ( x = r -> ( A C_H x <-> A C_H r ) ) | 
						
							| 5 | 4 2 | vtoclga |  |-  ( r e. CH -> A C_H r ) | 
						
							| 6 | 3 5 | syl |  |-  ( r e. HAtoms -> A C_H r ) | 
						
							| 7 | 1 | atordi |  |-  ( ( r e. HAtoms /\ A C_H r ) -> ( r C_ A \/ r C_ ( _|_ ` A ) ) ) | 
						
							| 8 | 6 7 | mpdan |  |-  ( r e. HAtoms -> ( r C_ A \/ r C_ ( _|_ ` A ) ) ) | 
						
							| 9 | 8 | ad2antrl |  |-  ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) ) /\ ( r e. HAtoms /\ r C_ ( p vH q ) ) ) -> ( r C_ A \/ r C_ ( _|_ ` A ) ) ) | 
						
							| 10 | 1 2 | chirredlem3 |  |-  ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) ) /\ ( r e. HAtoms /\ r C_ ( p vH q ) ) ) -> ( r C_ A -> r = p ) ) | 
						
							| 11 | 1 | ococi |  |-  ( _|_ ` ( _|_ ` A ) ) = A | 
						
							| 12 | 11 | sseq2i |  |-  ( p C_ ( _|_ ` ( _|_ ` A ) ) <-> p C_ A ) | 
						
							| 13 | 12 | biimpri |  |-  ( p C_ A -> p C_ ( _|_ ` ( _|_ ` A ) ) ) | 
						
							| 14 |  | atelch |  |-  ( q e. HAtoms -> q e. CH ) | 
						
							| 15 |  | atelch |  |-  ( p e. HAtoms -> p e. CH ) | 
						
							| 16 |  | chjcom |  |-  ( ( q e. CH /\ p e. CH ) -> ( q vH p ) = ( p vH q ) ) | 
						
							| 17 | 14 15 16 | syl2an |  |-  ( ( q e. HAtoms /\ p e. HAtoms ) -> ( q vH p ) = ( p vH q ) ) | 
						
							| 18 | 17 | sseq2d |  |-  ( ( q e. HAtoms /\ p e. HAtoms ) -> ( r C_ ( q vH p ) <-> r C_ ( p vH q ) ) ) | 
						
							| 19 | 18 | anbi2d |  |-  ( ( q e. HAtoms /\ p e. HAtoms ) -> ( ( r e. HAtoms /\ r C_ ( q vH p ) ) <-> ( r e. HAtoms /\ r C_ ( p vH q ) ) ) ) | 
						
							| 20 | 19 | ad2ant2r |  |-  ( ( ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) /\ ( p e. HAtoms /\ p C_ ( _|_ ` ( _|_ ` A ) ) ) ) -> ( ( r e. HAtoms /\ r C_ ( q vH p ) ) <-> ( r e. HAtoms /\ r C_ ( p vH q ) ) ) ) | 
						
							| 21 | 1 | choccli |  |-  ( _|_ ` A ) e. CH | 
						
							| 22 |  | cmcm3 |  |-  ( ( A e. CH /\ x e. CH ) -> ( A C_H x <-> ( _|_ ` A ) C_H x ) ) | 
						
							| 23 | 1 22 | mpan |  |-  ( x e. CH -> ( A C_H x <-> ( _|_ ` A ) C_H x ) ) | 
						
							| 24 | 2 23 | mpbid |  |-  ( x e. CH -> ( _|_ ` A ) C_H x ) | 
						
							| 25 | 21 24 | chirredlem3 |  |-  ( ( ( ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) /\ ( p e. HAtoms /\ p C_ ( _|_ ` ( _|_ ` A ) ) ) ) /\ ( r e. HAtoms /\ r C_ ( q vH p ) ) ) -> ( r C_ ( _|_ ` A ) -> r = q ) ) | 
						
							| 26 | 25 | ex |  |-  ( ( ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) /\ ( p e. HAtoms /\ p C_ ( _|_ ` ( _|_ ` A ) ) ) ) -> ( ( r e. HAtoms /\ r C_ ( q vH p ) ) -> ( r C_ ( _|_ ` A ) -> r = q ) ) ) | 
						
							| 27 | 20 26 | sylbird |  |-  ( ( ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) /\ ( p e. HAtoms /\ p C_ ( _|_ ` ( _|_ ` A ) ) ) ) -> ( ( r e. HAtoms /\ r C_ ( p vH q ) ) -> ( r C_ ( _|_ ` A ) -> r = q ) ) ) | 
						
							| 28 | 13 27 | sylanr2 |  |-  ( ( ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) /\ ( p e. HAtoms /\ p C_ A ) ) -> ( ( r e. HAtoms /\ r C_ ( p vH q ) ) -> ( r C_ ( _|_ ` A ) -> r = q ) ) ) | 
						
							| 29 | 28 | imp |  |-  ( ( ( ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) /\ ( p e. HAtoms /\ p C_ A ) ) /\ ( r e. HAtoms /\ r C_ ( p vH q ) ) ) -> ( r C_ ( _|_ ` A ) -> r = q ) ) | 
						
							| 30 | 29 | ancom1s |  |-  ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) ) /\ ( r e. HAtoms /\ r C_ ( p vH q ) ) ) -> ( r C_ ( _|_ ` A ) -> r = q ) ) | 
						
							| 31 | 10 30 | orim12d |  |-  ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) ) /\ ( r e. HAtoms /\ r C_ ( p vH q ) ) ) -> ( ( r C_ A \/ r C_ ( _|_ ` A ) ) -> ( r = p \/ r = q ) ) ) | 
						
							| 32 | 9 31 | mpd |  |-  ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) ) /\ ( r e. HAtoms /\ r C_ ( p vH q ) ) ) -> ( r = p \/ r = q ) ) |