| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chirred.1 |  |-  A e. CH | 
						
							| 2 |  | chirred.2 |  |-  ( x e. CH -> A C_H x ) | 
						
							| 3 |  | atelch |  |-  ( q e. HAtoms -> q e. CH ) | 
						
							| 4 | 1 | chirredlem2 |  |-  ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) /\ ( ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) ) -> ( ( _|_ ` r ) i^i ( p vH q ) ) = q ) | 
						
							| 5 | 4 | oveq2d |  |-  ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) /\ ( ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) ) -> ( r vH ( ( _|_ ` r ) i^i ( p vH q ) ) ) = ( r vH q ) ) | 
						
							| 6 |  | atelch |  |-  ( r e. HAtoms -> r e. CH ) | 
						
							| 7 | 6 | adantr |  |-  ( ( r e. HAtoms /\ r C_ A ) -> r e. CH ) | 
						
							| 8 |  | atelch |  |-  ( p e. HAtoms -> p e. CH ) | 
						
							| 9 |  | chjcl |  |-  ( ( p e. CH /\ q e. CH ) -> ( p vH q ) e. CH ) | 
						
							| 10 | 8 9 | sylan |  |-  ( ( p e. HAtoms /\ q e. CH ) -> ( p vH q ) e. CH ) | 
						
							| 11 | 10 | ad2ant2r |  |-  ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) -> ( p vH q ) e. CH ) | 
						
							| 12 |  | id |  |-  ( r C_ ( p vH q ) -> r C_ ( p vH q ) ) | 
						
							| 13 |  | pjoml2 |  |-  ( ( r e. CH /\ ( p vH q ) e. CH /\ r C_ ( p vH q ) ) -> ( r vH ( ( _|_ ` r ) i^i ( p vH q ) ) ) = ( p vH q ) ) | 
						
							| 14 | 7 11 12 13 | syl3an |  |-  ( ( ( r e. HAtoms /\ r C_ A ) /\ ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) /\ r C_ ( p vH q ) ) -> ( r vH ( ( _|_ ` r ) i^i ( p vH q ) ) ) = ( p vH q ) ) | 
						
							| 15 | 14 | 3com12 |  |-  ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) /\ ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) -> ( r vH ( ( _|_ ` r ) i^i ( p vH q ) ) ) = ( p vH q ) ) | 
						
							| 16 | 15 | 3expb |  |-  ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) /\ ( ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) ) -> ( r vH ( ( _|_ ` r ) i^i ( p vH q ) ) ) = ( p vH q ) ) | 
						
							| 17 | 5 16 | eqtr3d |  |-  ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) /\ ( ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) ) -> ( r vH q ) = ( p vH q ) ) | 
						
							| 18 | 17 | ineq2d |  |-  ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) /\ ( ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) ) -> ( A i^i ( r vH q ) ) = ( A i^i ( p vH q ) ) ) | 
						
							| 19 |  | breq2 |  |-  ( x = r -> ( A C_H x <-> A C_H r ) ) | 
						
							| 20 | 19 2 | vtoclga |  |-  ( r e. CH -> A C_H r ) | 
						
							| 21 |  | breq2 |  |-  ( x = q -> ( A C_H x <-> A C_H q ) ) | 
						
							| 22 | 21 2 | vtoclga |  |-  ( q e. CH -> A C_H q ) | 
						
							| 23 | 20 22 | anim12i |  |-  ( ( r e. CH /\ q e. CH ) -> ( A C_H r /\ A C_H q ) ) | 
						
							| 24 |  | fh1 |  |-  ( ( ( A e. CH /\ r e. CH /\ q e. CH ) /\ ( A C_H r /\ A C_H q ) ) -> ( A i^i ( r vH q ) ) = ( ( A i^i r ) vH ( A i^i q ) ) ) | 
						
							| 25 | 1 24 | mp3anl1 |  |-  ( ( ( r e. CH /\ q e. CH ) /\ ( A C_H r /\ A C_H q ) ) -> ( A i^i ( r vH q ) ) = ( ( A i^i r ) vH ( A i^i q ) ) ) | 
						
							| 26 | 23 25 | mpdan |  |-  ( ( r e. CH /\ q e. CH ) -> ( A i^i ( r vH q ) ) = ( ( A i^i r ) vH ( A i^i q ) ) ) | 
						
							| 27 | 6 26 | sylan |  |-  ( ( r e. HAtoms /\ q e. CH ) -> ( A i^i ( r vH q ) ) = ( ( A i^i r ) vH ( A i^i q ) ) ) | 
						
							| 28 | 27 | ancoms |  |-  ( ( q e. CH /\ r e. HAtoms ) -> ( A i^i ( r vH q ) ) = ( ( A i^i r ) vH ( A i^i q ) ) ) | 
						
							| 29 | 28 | adantrr |  |-  ( ( q e. CH /\ ( r e. HAtoms /\ r C_ A ) ) -> ( A i^i ( r vH q ) ) = ( ( A i^i r ) vH ( A i^i q ) ) ) | 
						
							| 30 | 29 | ad2ant2r |  |-  ( ( ( q e. CH /\ q C_ ( _|_ ` A ) ) /\ ( ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) ) -> ( A i^i ( r vH q ) ) = ( ( A i^i r ) vH ( A i^i q ) ) ) | 
						
							| 31 | 30 | adantll |  |-  ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) /\ ( ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) ) -> ( A i^i ( r vH q ) ) = ( ( A i^i r ) vH ( A i^i q ) ) ) | 
						
							| 32 |  | breq2 |  |-  ( x = p -> ( A C_H x <-> A C_H p ) ) | 
						
							| 33 | 32 2 | vtoclga |  |-  ( p e. CH -> A C_H p ) | 
						
							| 34 | 33 22 | anim12i |  |-  ( ( p e. CH /\ q e. CH ) -> ( A C_H p /\ A C_H q ) ) | 
						
							| 35 |  | fh1 |  |-  ( ( ( A e. CH /\ p e. CH /\ q e. CH ) /\ ( A C_H p /\ A C_H q ) ) -> ( A i^i ( p vH q ) ) = ( ( A i^i p ) vH ( A i^i q ) ) ) | 
						
							| 36 | 1 35 | mp3anl1 |  |-  ( ( ( p e. CH /\ q e. CH ) /\ ( A C_H p /\ A C_H q ) ) -> ( A i^i ( p vH q ) ) = ( ( A i^i p ) vH ( A i^i q ) ) ) | 
						
							| 37 | 34 36 | mpdan |  |-  ( ( p e. CH /\ q e. CH ) -> ( A i^i ( p vH q ) ) = ( ( A i^i p ) vH ( A i^i q ) ) ) | 
						
							| 38 | 8 37 | sylan |  |-  ( ( p e. HAtoms /\ q e. CH ) -> ( A i^i ( p vH q ) ) = ( ( A i^i p ) vH ( A i^i q ) ) ) | 
						
							| 39 | 38 | ad2ant2r |  |-  ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) -> ( A i^i ( p vH q ) ) = ( ( A i^i p ) vH ( A i^i q ) ) ) | 
						
							| 40 | 39 | adantr |  |-  ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) /\ ( ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) ) -> ( A i^i ( p vH q ) ) = ( ( A i^i p ) vH ( A i^i q ) ) ) | 
						
							| 41 | 18 31 40 | 3eqtr3d |  |-  ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) /\ ( ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) ) -> ( ( A i^i r ) vH ( A i^i q ) ) = ( ( A i^i p ) vH ( A i^i q ) ) ) | 
						
							| 42 |  | sseqin2 |  |-  ( r C_ A <-> ( A i^i r ) = r ) | 
						
							| 43 | 42 | biimpi |  |-  ( r C_ A -> ( A i^i r ) = r ) | 
						
							| 44 | 43 | ad2antlr |  |-  ( ( ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) -> ( A i^i r ) = r ) | 
						
							| 45 | 44 | adantl |  |-  ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) /\ ( ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) ) -> ( A i^i r ) = r ) | 
						
							| 46 |  | incom |  |-  ( A i^i q ) = ( q i^i A ) | 
						
							| 47 |  | chsh |  |-  ( q e. CH -> q e. SH ) | 
						
							| 48 | 1 | chshii |  |-  A e. SH | 
						
							| 49 |  | orthin |  |-  ( ( q e. SH /\ A e. SH ) -> ( q C_ ( _|_ ` A ) -> ( q i^i A ) = 0H ) ) | 
						
							| 50 | 47 48 49 | sylancl |  |-  ( q e. CH -> ( q C_ ( _|_ ` A ) -> ( q i^i A ) = 0H ) ) | 
						
							| 51 | 50 | imp |  |-  ( ( q e. CH /\ q C_ ( _|_ ` A ) ) -> ( q i^i A ) = 0H ) | 
						
							| 52 | 46 51 | eqtrid |  |-  ( ( q e. CH /\ q C_ ( _|_ ` A ) ) -> ( A i^i q ) = 0H ) | 
						
							| 53 | 52 | ad2antlr |  |-  ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) /\ ( ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) ) -> ( A i^i q ) = 0H ) | 
						
							| 54 | 45 53 | oveq12d |  |-  ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) /\ ( ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) ) -> ( ( A i^i r ) vH ( A i^i q ) ) = ( r vH 0H ) ) | 
						
							| 55 |  | sseqin2 |  |-  ( p C_ A <-> ( A i^i p ) = p ) | 
						
							| 56 | 55 | biimpi |  |-  ( p C_ A -> ( A i^i p ) = p ) | 
						
							| 57 | 56 | adantl |  |-  ( ( p e. HAtoms /\ p C_ A ) -> ( A i^i p ) = p ) | 
						
							| 58 | 57 | ad2antrr |  |-  ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) /\ ( ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) ) -> ( A i^i p ) = p ) | 
						
							| 59 | 58 53 | oveq12d |  |-  ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) /\ ( ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) ) -> ( ( A i^i p ) vH ( A i^i q ) ) = ( p vH 0H ) ) | 
						
							| 60 | 41 54 59 | 3eqtr3d |  |-  ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) /\ ( ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) ) -> ( r vH 0H ) = ( p vH 0H ) ) | 
						
							| 61 |  | chj0 |  |-  ( r e. CH -> ( r vH 0H ) = r ) | 
						
							| 62 | 6 61 | syl |  |-  ( r e. HAtoms -> ( r vH 0H ) = r ) | 
						
							| 63 | 62 | ad2antrr |  |-  ( ( ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) -> ( r vH 0H ) = r ) | 
						
							| 64 | 63 | adantl |  |-  ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) /\ ( ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) ) -> ( r vH 0H ) = r ) | 
						
							| 65 |  | chj0 |  |-  ( p e. CH -> ( p vH 0H ) = p ) | 
						
							| 66 | 8 65 | syl |  |-  ( p e. HAtoms -> ( p vH 0H ) = p ) | 
						
							| 67 | 66 | ad3antrrr |  |-  ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) /\ ( ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) ) -> ( p vH 0H ) = p ) | 
						
							| 68 | 60 64 67 | 3eqtr3d |  |-  ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) /\ ( ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) ) -> r = p ) | 
						
							| 69 | 68 | exp44 |  |-  ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) -> ( r e. HAtoms -> ( r C_ A -> ( r C_ ( p vH q ) -> r = p ) ) ) ) | 
						
							| 70 | 69 | com34 |  |-  ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) -> ( r e. HAtoms -> ( r C_ ( p vH q ) -> ( r C_ A -> r = p ) ) ) ) | 
						
							| 71 | 3 70 | sylanr1 |  |-  ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) ) -> ( r e. HAtoms -> ( r C_ ( p vH q ) -> ( r C_ A -> r = p ) ) ) ) | 
						
							| 72 | 71 | imp32 |  |-  ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) ) /\ ( r e. HAtoms /\ r C_ ( p vH q ) ) ) -> ( r C_ A -> r = p ) ) |