Step |
Hyp |
Ref |
Expression |
1 |
|
chirred.1 |
|- A e. CH |
2 |
|
chirred.2 |
|- ( x e. CH -> A C_H x ) |
3 |
|
atelch |
|- ( q e. HAtoms -> q e. CH ) |
4 |
1
|
chirredlem2 |
|- ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) /\ ( ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) ) -> ( ( _|_ ` r ) i^i ( p vH q ) ) = q ) |
5 |
4
|
oveq2d |
|- ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) /\ ( ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) ) -> ( r vH ( ( _|_ ` r ) i^i ( p vH q ) ) ) = ( r vH q ) ) |
6 |
|
atelch |
|- ( r e. HAtoms -> r e. CH ) |
7 |
6
|
adantr |
|- ( ( r e. HAtoms /\ r C_ A ) -> r e. CH ) |
8 |
|
atelch |
|- ( p e. HAtoms -> p e. CH ) |
9 |
|
chjcl |
|- ( ( p e. CH /\ q e. CH ) -> ( p vH q ) e. CH ) |
10 |
8 9
|
sylan |
|- ( ( p e. HAtoms /\ q e. CH ) -> ( p vH q ) e. CH ) |
11 |
10
|
ad2ant2r |
|- ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) -> ( p vH q ) e. CH ) |
12 |
|
id |
|- ( r C_ ( p vH q ) -> r C_ ( p vH q ) ) |
13 |
|
pjoml2 |
|- ( ( r e. CH /\ ( p vH q ) e. CH /\ r C_ ( p vH q ) ) -> ( r vH ( ( _|_ ` r ) i^i ( p vH q ) ) ) = ( p vH q ) ) |
14 |
7 11 12 13
|
syl3an |
|- ( ( ( r e. HAtoms /\ r C_ A ) /\ ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) /\ r C_ ( p vH q ) ) -> ( r vH ( ( _|_ ` r ) i^i ( p vH q ) ) ) = ( p vH q ) ) |
15 |
14
|
3com12 |
|- ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) /\ ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) -> ( r vH ( ( _|_ ` r ) i^i ( p vH q ) ) ) = ( p vH q ) ) |
16 |
15
|
3expb |
|- ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) /\ ( ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) ) -> ( r vH ( ( _|_ ` r ) i^i ( p vH q ) ) ) = ( p vH q ) ) |
17 |
5 16
|
eqtr3d |
|- ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) /\ ( ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) ) -> ( r vH q ) = ( p vH q ) ) |
18 |
17
|
ineq2d |
|- ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) /\ ( ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) ) -> ( A i^i ( r vH q ) ) = ( A i^i ( p vH q ) ) ) |
19 |
|
breq2 |
|- ( x = r -> ( A C_H x <-> A C_H r ) ) |
20 |
19 2
|
vtoclga |
|- ( r e. CH -> A C_H r ) |
21 |
|
breq2 |
|- ( x = q -> ( A C_H x <-> A C_H q ) ) |
22 |
21 2
|
vtoclga |
|- ( q e. CH -> A C_H q ) |
23 |
20 22
|
anim12i |
|- ( ( r e. CH /\ q e. CH ) -> ( A C_H r /\ A C_H q ) ) |
24 |
|
fh1 |
|- ( ( ( A e. CH /\ r e. CH /\ q e. CH ) /\ ( A C_H r /\ A C_H q ) ) -> ( A i^i ( r vH q ) ) = ( ( A i^i r ) vH ( A i^i q ) ) ) |
25 |
1 24
|
mp3anl1 |
|- ( ( ( r e. CH /\ q e. CH ) /\ ( A C_H r /\ A C_H q ) ) -> ( A i^i ( r vH q ) ) = ( ( A i^i r ) vH ( A i^i q ) ) ) |
26 |
23 25
|
mpdan |
|- ( ( r e. CH /\ q e. CH ) -> ( A i^i ( r vH q ) ) = ( ( A i^i r ) vH ( A i^i q ) ) ) |
27 |
6 26
|
sylan |
|- ( ( r e. HAtoms /\ q e. CH ) -> ( A i^i ( r vH q ) ) = ( ( A i^i r ) vH ( A i^i q ) ) ) |
28 |
27
|
ancoms |
|- ( ( q e. CH /\ r e. HAtoms ) -> ( A i^i ( r vH q ) ) = ( ( A i^i r ) vH ( A i^i q ) ) ) |
29 |
28
|
adantrr |
|- ( ( q e. CH /\ ( r e. HAtoms /\ r C_ A ) ) -> ( A i^i ( r vH q ) ) = ( ( A i^i r ) vH ( A i^i q ) ) ) |
30 |
29
|
ad2ant2r |
|- ( ( ( q e. CH /\ q C_ ( _|_ ` A ) ) /\ ( ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) ) -> ( A i^i ( r vH q ) ) = ( ( A i^i r ) vH ( A i^i q ) ) ) |
31 |
30
|
adantll |
|- ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) /\ ( ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) ) -> ( A i^i ( r vH q ) ) = ( ( A i^i r ) vH ( A i^i q ) ) ) |
32 |
|
breq2 |
|- ( x = p -> ( A C_H x <-> A C_H p ) ) |
33 |
32 2
|
vtoclga |
|- ( p e. CH -> A C_H p ) |
34 |
33 22
|
anim12i |
|- ( ( p e. CH /\ q e. CH ) -> ( A C_H p /\ A C_H q ) ) |
35 |
|
fh1 |
|- ( ( ( A e. CH /\ p e. CH /\ q e. CH ) /\ ( A C_H p /\ A C_H q ) ) -> ( A i^i ( p vH q ) ) = ( ( A i^i p ) vH ( A i^i q ) ) ) |
36 |
1 35
|
mp3anl1 |
|- ( ( ( p e. CH /\ q e. CH ) /\ ( A C_H p /\ A C_H q ) ) -> ( A i^i ( p vH q ) ) = ( ( A i^i p ) vH ( A i^i q ) ) ) |
37 |
34 36
|
mpdan |
|- ( ( p e. CH /\ q e. CH ) -> ( A i^i ( p vH q ) ) = ( ( A i^i p ) vH ( A i^i q ) ) ) |
38 |
8 37
|
sylan |
|- ( ( p e. HAtoms /\ q e. CH ) -> ( A i^i ( p vH q ) ) = ( ( A i^i p ) vH ( A i^i q ) ) ) |
39 |
38
|
ad2ant2r |
|- ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) -> ( A i^i ( p vH q ) ) = ( ( A i^i p ) vH ( A i^i q ) ) ) |
40 |
39
|
adantr |
|- ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) /\ ( ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) ) -> ( A i^i ( p vH q ) ) = ( ( A i^i p ) vH ( A i^i q ) ) ) |
41 |
18 31 40
|
3eqtr3d |
|- ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) /\ ( ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) ) -> ( ( A i^i r ) vH ( A i^i q ) ) = ( ( A i^i p ) vH ( A i^i q ) ) ) |
42 |
|
sseqin2 |
|- ( r C_ A <-> ( A i^i r ) = r ) |
43 |
42
|
biimpi |
|- ( r C_ A -> ( A i^i r ) = r ) |
44 |
43
|
ad2antlr |
|- ( ( ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) -> ( A i^i r ) = r ) |
45 |
44
|
adantl |
|- ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) /\ ( ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) ) -> ( A i^i r ) = r ) |
46 |
|
incom |
|- ( A i^i q ) = ( q i^i A ) |
47 |
|
chsh |
|- ( q e. CH -> q e. SH ) |
48 |
1
|
chshii |
|- A e. SH |
49 |
|
orthin |
|- ( ( q e. SH /\ A e. SH ) -> ( q C_ ( _|_ ` A ) -> ( q i^i A ) = 0H ) ) |
50 |
47 48 49
|
sylancl |
|- ( q e. CH -> ( q C_ ( _|_ ` A ) -> ( q i^i A ) = 0H ) ) |
51 |
50
|
imp |
|- ( ( q e. CH /\ q C_ ( _|_ ` A ) ) -> ( q i^i A ) = 0H ) |
52 |
46 51
|
syl5eq |
|- ( ( q e. CH /\ q C_ ( _|_ ` A ) ) -> ( A i^i q ) = 0H ) |
53 |
52
|
ad2antlr |
|- ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) /\ ( ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) ) -> ( A i^i q ) = 0H ) |
54 |
45 53
|
oveq12d |
|- ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) /\ ( ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) ) -> ( ( A i^i r ) vH ( A i^i q ) ) = ( r vH 0H ) ) |
55 |
|
sseqin2 |
|- ( p C_ A <-> ( A i^i p ) = p ) |
56 |
55
|
biimpi |
|- ( p C_ A -> ( A i^i p ) = p ) |
57 |
56
|
adantl |
|- ( ( p e. HAtoms /\ p C_ A ) -> ( A i^i p ) = p ) |
58 |
57
|
ad2antrr |
|- ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) /\ ( ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) ) -> ( A i^i p ) = p ) |
59 |
58 53
|
oveq12d |
|- ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) /\ ( ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) ) -> ( ( A i^i p ) vH ( A i^i q ) ) = ( p vH 0H ) ) |
60 |
41 54 59
|
3eqtr3d |
|- ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) /\ ( ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) ) -> ( r vH 0H ) = ( p vH 0H ) ) |
61 |
|
chj0 |
|- ( r e. CH -> ( r vH 0H ) = r ) |
62 |
6 61
|
syl |
|- ( r e. HAtoms -> ( r vH 0H ) = r ) |
63 |
62
|
ad2antrr |
|- ( ( ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) -> ( r vH 0H ) = r ) |
64 |
63
|
adantl |
|- ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) /\ ( ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) ) -> ( r vH 0H ) = r ) |
65 |
|
chj0 |
|- ( p e. CH -> ( p vH 0H ) = p ) |
66 |
8 65
|
syl |
|- ( p e. HAtoms -> ( p vH 0H ) = p ) |
67 |
66
|
ad3antrrr |
|- ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) /\ ( ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) ) -> ( p vH 0H ) = p ) |
68 |
60 64 67
|
3eqtr3d |
|- ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) /\ ( ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) ) -> r = p ) |
69 |
68
|
exp44 |
|- ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) -> ( r e. HAtoms -> ( r C_ A -> ( r C_ ( p vH q ) -> r = p ) ) ) ) |
70 |
69
|
com34 |
|- ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) -> ( r e. HAtoms -> ( r C_ ( p vH q ) -> ( r C_ A -> r = p ) ) ) ) |
71 |
3 70
|
sylanr1 |
|- ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) ) -> ( r e. HAtoms -> ( r C_ ( p vH q ) -> ( r C_ A -> r = p ) ) ) ) |
72 |
71
|
imp32 |
|- ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) ) /\ ( r e. HAtoms /\ r C_ ( p vH q ) ) ) -> ( r C_ A -> r = p ) ) |