| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chincl |
|- ( ( A e. CH /\ B e. CH ) -> ( A i^i B ) e. CH ) |
| 2 |
|
chincl |
|- ( ( A e. CH /\ C e. CH ) -> ( A i^i C ) e. CH ) |
| 3 |
|
chjcl |
|- ( ( ( A i^i B ) e. CH /\ ( A i^i C ) e. CH ) -> ( ( A i^i B ) vH ( A i^i C ) ) e. CH ) |
| 4 |
1 2 3
|
syl2an |
|- ( ( ( A e. CH /\ B e. CH ) /\ ( A e. CH /\ C e. CH ) ) -> ( ( A i^i B ) vH ( A i^i C ) ) e. CH ) |
| 5 |
4
|
anandis |
|- ( ( A e. CH /\ ( B e. CH /\ C e. CH ) ) -> ( ( A i^i B ) vH ( A i^i C ) ) e. CH ) |
| 6 |
|
chjcl |
|- ( ( B e. CH /\ C e. CH ) -> ( B vH C ) e. CH ) |
| 7 |
|
chincl |
|- ( ( A e. CH /\ ( B vH C ) e. CH ) -> ( A i^i ( B vH C ) ) e. CH ) |
| 8 |
6 7
|
sylan2 |
|- ( ( A e. CH /\ ( B e. CH /\ C e. CH ) ) -> ( A i^i ( B vH C ) ) e. CH ) |
| 9 |
|
chsh |
|- ( ( A i^i ( B vH C ) ) e. CH -> ( A i^i ( B vH C ) ) e. SH ) |
| 10 |
8 9
|
syl |
|- ( ( A e. CH /\ ( B e. CH /\ C e. CH ) ) -> ( A i^i ( B vH C ) ) e. SH ) |
| 11 |
5 10
|
jca |
|- ( ( A e. CH /\ ( B e. CH /\ C e. CH ) ) -> ( ( ( A i^i B ) vH ( A i^i C ) ) e. CH /\ ( A i^i ( B vH C ) ) e. SH ) ) |
| 12 |
11
|
3impb |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( ( ( A i^i B ) vH ( A i^i C ) ) e. CH /\ ( A i^i ( B vH C ) ) e. SH ) ) |
| 13 |
12
|
adantr |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> ( ( ( A i^i B ) vH ( A i^i C ) ) e. CH /\ ( A i^i ( B vH C ) ) e. SH ) ) |
| 14 |
|
ledi |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( ( A i^i B ) vH ( A i^i C ) ) C_ ( A i^i ( B vH C ) ) ) |
| 15 |
14
|
adantr |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> ( ( A i^i B ) vH ( A i^i C ) ) C_ ( A i^i ( B vH C ) ) ) |
| 16 |
|
incom |
|- ( A i^i ( B vH C ) ) = ( ( B vH C ) i^i A ) |
| 17 |
16
|
a1i |
|- ( ( ( A e. CH /\ B e. CH ) /\ ( A e. CH /\ C e. CH ) ) -> ( A i^i ( B vH C ) ) = ( ( B vH C ) i^i A ) ) |
| 18 |
|
chdmj1 |
|- ( ( ( A i^i B ) e. CH /\ ( A i^i C ) e. CH ) -> ( _|_ ` ( ( A i^i B ) vH ( A i^i C ) ) ) = ( ( _|_ ` ( A i^i B ) ) i^i ( _|_ ` ( A i^i C ) ) ) ) |
| 19 |
1 2 18
|
syl2an |
|- ( ( ( A e. CH /\ B e. CH ) /\ ( A e. CH /\ C e. CH ) ) -> ( _|_ ` ( ( A i^i B ) vH ( A i^i C ) ) ) = ( ( _|_ ` ( A i^i B ) ) i^i ( _|_ ` ( A i^i C ) ) ) ) |
| 20 |
|
chdmm1 |
|- ( ( A e. CH /\ B e. CH ) -> ( _|_ ` ( A i^i B ) ) = ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) |
| 21 |
|
chdmm1 |
|- ( ( A e. CH /\ C e. CH ) -> ( _|_ ` ( A i^i C ) ) = ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) |
| 22 |
20 21
|
ineqan12d |
|- ( ( ( A e. CH /\ B e. CH ) /\ ( A e. CH /\ C e. CH ) ) -> ( ( _|_ ` ( A i^i B ) ) i^i ( _|_ ` ( A i^i C ) ) ) = ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) ) |
| 23 |
19 22
|
eqtrd |
|- ( ( ( A e. CH /\ B e. CH ) /\ ( A e. CH /\ C e. CH ) ) -> ( _|_ ` ( ( A i^i B ) vH ( A i^i C ) ) ) = ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) ) |
| 24 |
17 23
|
ineq12d |
|- ( ( ( A e. CH /\ B e. CH ) /\ ( A e. CH /\ C e. CH ) ) -> ( ( A i^i ( B vH C ) ) i^i ( _|_ ` ( ( A i^i B ) vH ( A i^i C ) ) ) ) = ( ( ( B vH C ) i^i A ) i^i ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) ) ) |
| 25 |
24
|
3impdi |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( ( A i^i ( B vH C ) ) i^i ( _|_ ` ( ( A i^i B ) vH ( A i^i C ) ) ) ) = ( ( ( B vH C ) i^i A ) i^i ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) ) ) |
| 26 |
25
|
adantr |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> ( ( A i^i ( B vH C ) ) i^i ( _|_ ` ( ( A i^i B ) vH ( A i^i C ) ) ) ) = ( ( ( B vH C ) i^i A ) i^i ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) ) ) |
| 27 |
|
inass |
|- ( ( ( B vH C ) i^i A ) i^i ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) ) = ( ( B vH C ) i^i ( A i^i ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) ) ) |
| 28 |
|
cmcm2 |
|- ( ( A e. CH /\ B e. CH ) -> ( A C_H B <-> A C_H ( _|_ ` B ) ) ) |
| 29 |
|
choccl |
|- ( B e. CH -> ( _|_ ` B ) e. CH ) |
| 30 |
|
cmbr3 |
|- ( ( A e. CH /\ ( _|_ ` B ) e. CH ) -> ( A C_H ( _|_ ` B ) <-> ( A i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) = ( A i^i ( _|_ ` B ) ) ) ) |
| 31 |
29 30
|
sylan2 |
|- ( ( A e. CH /\ B e. CH ) -> ( A C_H ( _|_ ` B ) <-> ( A i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) = ( A i^i ( _|_ ` B ) ) ) ) |
| 32 |
28 31
|
bitrd |
|- ( ( A e. CH /\ B e. CH ) -> ( A C_H B <-> ( A i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) = ( A i^i ( _|_ ` B ) ) ) ) |
| 33 |
32
|
biimpa |
|- ( ( ( A e. CH /\ B e. CH ) /\ A C_H B ) -> ( A i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) = ( A i^i ( _|_ ` B ) ) ) |
| 34 |
33
|
3adantl3 |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ A C_H B ) -> ( A i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) = ( A i^i ( _|_ ` B ) ) ) |
| 35 |
34
|
adantrr |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> ( A i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) = ( A i^i ( _|_ ` B ) ) ) |
| 36 |
|
cmcm2 |
|- ( ( A e. CH /\ C e. CH ) -> ( A C_H C <-> A C_H ( _|_ ` C ) ) ) |
| 37 |
|
choccl |
|- ( C e. CH -> ( _|_ ` C ) e. CH ) |
| 38 |
|
cmbr3 |
|- ( ( A e. CH /\ ( _|_ ` C ) e. CH ) -> ( A C_H ( _|_ ` C ) <-> ( A i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) = ( A i^i ( _|_ ` C ) ) ) ) |
| 39 |
37 38
|
sylan2 |
|- ( ( A e. CH /\ C e. CH ) -> ( A C_H ( _|_ ` C ) <-> ( A i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) = ( A i^i ( _|_ ` C ) ) ) ) |
| 40 |
36 39
|
bitrd |
|- ( ( A e. CH /\ C e. CH ) -> ( A C_H C <-> ( A i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) = ( A i^i ( _|_ ` C ) ) ) ) |
| 41 |
40
|
biimpa |
|- ( ( ( A e. CH /\ C e. CH ) /\ A C_H C ) -> ( A i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) = ( A i^i ( _|_ ` C ) ) ) |
| 42 |
41
|
3adantl2 |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ A C_H C ) -> ( A i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) = ( A i^i ( _|_ ` C ) ) ) |
| 43 |
42
|
adantrl |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> ( A i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) = ( A i^i ( _|_ ` C ) ) ) |
| 44 |
35 43
|
ineq12d |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> ( ( A i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) i^i ( A i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) ) = ( ( A i^i ( _|_ ` B ) ) i^i ( A i^i ( _|_ ` C ) ) ) ) |
| 45 |
|
inindi |
|- ( A i^i ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) ) = ( ( A i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) i^i ( A i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) ) |
| 46 |
|
inindi |
|- ( A i^i ( ( _|_ ` B ) i^i ( _|_ ` C ) ) ) = ( ( A i^i ( _|_ ` B ) ) i^i ( A i^i ( _|_ ` C ) ) ) |
| 47 |
44 45 46
|
3eqtr4g |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> ( A i^i ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) ) = ( A i^i ( ( _|_ ` B ) i^i ( _|_ ` C ) ) ) ) |
| 48 |
47
|
ineq2d |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> ( ( B vH C ) i^i ( A i^i ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) ) ) = ( ( B vH C ) i^i ( A i^i ( ( _|_ ` B ) i^i ( _|_ ` C ) ) ) ) ) |
| 49 |
27 48
|
eqtrid |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> ( ( ( B vH C ) i^i A ) i^i ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) ) = ( ( B vH C ) i^i ( A i^i ( ( _|_ ` B ) i^i ( _|_ ` C ) ) ) ) ) |
| 50 |
|
in12 |
|- ( ( B vH C ) i^i ( A i^i ( ( _|_ ` B ) i^i ( _|_ ` C ) ) ) ) = ( A i^i ( ( B vH C ) i^i ( ( _|_ ` B ) i^i ( _|_ ` C ) ) ) ) |
| 51 |
49 50
|
eqtrdi |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> ( ( ( B vH C ) i^i A ) i^i ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) ) = ( A i^i ( ( B vH C ) i^i ( ( _|_ ` B ) i^i ( _|_ ` C ) ) ) ) ) |
| 52 |
|
chdmj1 |
|- ( ( B e. CH /\ C e. CH ) -> ( _|_ ` ( B vH C ) ) = ( ( _|_ ` B ) i^i ( _|_ ` C ) ) ) |
| 53 |
52
|
ineq2d |
|- ( ( B e. CH /\ C e. CH ) -> ( ( B vH C ) i^i ( _|_ ` ( B vH C ) ) ) = ( ( B vH C ) i^i ( ( _|_ ` B ) i^i ( _|_ ` C ) ) ) ) |
| 54 |
|
chocin |
|- ( ( B vH C ) e. CH -> ( ( B vH C ) i^i ( _|_ ` ( B vH C ) ) ) = 0H ) |
| 55 |
6 54
|
syl |
|- ( ( B e. CH /\ C e. CH ) -> ( ( B vH C ) i^i ( _|_ ` ( B vH C ) ) ) = 0H ) |
| 56 |
53 55
|
eqtr3d |
|- ( ( B e. CH /\ C e. CH ) -> ( ( B vH C ) i^i ( ( _|_ ` B ) i^i ( _|_ ` C ) ) ) = 0H ) |
| 57 |
56
|
ineq2d |
|- ( ( B e. CH /\ C e. CH ) -> ( A i^i ( ( B vH C ) i^i ( ( _|_ ` B ) i^i ( _|_ ` C ) ) ) ) = ( A i^i 0H ) ) |
| 58 |
|
chm0 |
|- ( A e. CH -> ( A i^i 0H ) = 0H ) |
| 59 |
57 58
|
sylan9eqr |
|- ( ( A e. CH /\ ( B e. CH /\ C e. CH ) ) -> ( A i^i ( ( B vH C ) i^i ( ( _|_ ` B ) i^i ( _|_ ` C ) ) ) ) = 0H ) |
| 60 |
59
|
3impb |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( A i^i ( ( B vH C ) i^i ( ( _|_ ` B ) i^i ( _|_ ` C ) ) ) ) = 0H ) |
| 61 |
60
|
adantr |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> ( A i^i ( ( B vH C ) i^i ( ( _|_ ` B ) i^i ( _|_ ` C ) ) ) ) = 0H ) |
| 62 |
51 61
|
eqtrd |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> ( ( ( B vH C ) i^i A ) i^i ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) ) = 0H ) |
| 63 |
26 62
|
eqtrd |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> ( ( A i^i ( B vH C ) ) i^i ( _|_ ` ( ( A i^i B ) vH ( A i^i C ) ) ) ) = 0H ) |
| 64 |
|
pjoml |
|- ( ( ( ( ( A i^i B ) vH ( A i^i C ) ) e. CH /\ ( A i^i ( B vH C ) ) e. SH ) /\ ( ( ( A i^i B ) vH ( A i^i C ) ) C_ ( A i^i ( B vH C ) ) /\ ( ( A i^i ( B vH C ) ) i^i ( _|_ ` ( ( A i^i B ) vH ( A i^i C ) ) ) ) = 0H ) ) -> ( ( A i^i B ) vH ( A i^i C ) ) = ( A i^i ( B vH C ) ) ) |
| 65 |
13 15 63 64
|
syl12anc |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> ( ( A i^i B ) vH ( A i^i C ) ) = ( A i^i ( B vH C ) ) ) |
| 66 |
65
|
eqcomd |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> ( A i^i ( B vH C ) ) = ( ( A i^i B ) vH ( A i^i C ) ) ) |