Step |
Hyp |
Ref |
Expression |
1 |
|
chincl |
|- ( ( A e. CH /\ B e. CH ) -> ( A i^i B ) e. CH ) |
2 |
|
chincl |
|- ( ( A e. CH /\ C e. CH ) -> ( A i^i C ) e. CH ) |
3 |
|
chjcl |
|- ( ( ( A i^i B ) e. CH /\ ( A i^i C ) e. CH ) -> ( ( A i^i B ) vH ( A i^i C ) ) e. CH ) |
4 |
1 2 3
|
syl2an |
|- ( ( ( A e. CH /\ B e. CH ) /\ ( A e. CH /\ C e. CH ) ) -> ( ( A i^i B ) vH ( A i^i C ) ) e. CH ) |
5 |
4
|
anandis |
|- ( ( A e. CH /\ ( B e. CH /\ C e. CH ) ) -> ( ( A i^i B ) vH ( A i^i C ) ) e. CH ) |
6 |
|
chjcl |
|- ( ( B e. CH /\ C e. CH ) -> ( B vH C ) e. CH ) |
7 |
|
chincl |
|- ( ( A e. CH /\ ( B vH C ) e. CH ) -> ( A i^i ( B vH C ) ) e. CH ) |
8 |
6 7
|
sylan2 |
|- ( ( A e. CH /\ ( B e. CH /\ C e. CH ) ) -> ( A i^i ( B vH C ) ) e. CH ) |
9 |
|
chsh |
|- ( ( A i^i ( B vH C ) ) e. CH -> ( A i^i ( B vH C ) ) e. SH ) |
10 |
8 9
|
syl |
|- ( ( A e. CH /\ ( B e. CH /\ C e. CH ) ) -> ( A i^i ( B vH C ) ) e. SH ) |
11 |
5 10
|
jca |
|- ( ( A e. CH /\ ( B e. CH /\ C e. CH ) ) -> ( ( ( A i^i B ) vH ( A i^i C ) ) e. CH /\ ( A i^i ( B vH C ) ) e. SH ) ) |
12 |
11
|
3impb |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( ( ( A i^i B ) vH ( A i^i C ) ) e. CH /\ ( A i^i ( B vH C ) ) e. SH ) ) |
13 |
12
|
adantr |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> ( ( ( A i^i B ) vH ( A i^i C ) ) e. CH /\ ( A i^i ( B vH C ) ) e. SH ) ) |
14 |
|
ledi |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( ( A i^i B ) vH ( A i^i C ) ) C_ ( A i^i ( B vH C ) ) ) |
15 |
14
|
adantr |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> ( ( A i^i B ) vH ( A i^i C ) ) C_ ( A i^i ( B vH C ) ) ) |
16 |
|
incom |
|- ( A i^i ( B vH C ) ) = ( ( B vH C ) i^i A ) |
17 |
16
|
a1i |
|- ( ( ( A e. CH /\ B e. CH ) /\ ( A e. CH /\ C e. CH ) ) -> ( A i^i ( B vH C ) ) = ( ( B vH C ) i^i A ) ) |
18 |
|
chdmj1 |
|- ( ( ( A i^i B ) e. CH /\ ( A i^i C ) e. CH ) -> ( _|_ ` ( ( A i^i B ) vH ( A i^i C ) ) ) = ( ( _|_ ` ( A i^i B ) ) i^i ( _|_ ` ( A i^i C ) ) ) ) |
19 |
1 2 18
|
syl2an |
|- ( ( ( A e. CH /\ B e. CH ) /\ ( A e. CH /\ C e. CH ) ) -> ( _|_ ` ( ( A i^i B ) vH ( A i^i C ) ) ) = ( ( _|_ ` ( A i^i B ) ) i^i ( _|_ ` ( A i^i C ) ) ) ) |
20 |
|
chdmm1 |
|- ( ( A e. CH /\ B e. CH ) -> ( _|_ ` ( A i^i B ) ) = ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) |
21 |
|
chdmm1 |
|- ( ( A e. CH /\ C e. CH ) -> ( _|_ ` ( A i^i C ) ) = ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) |
22 |
20 21
|
ineqan12d |
|- ( ( ( A e. CH /\ B e. CH ) /\ ( A e. CH /\ C e. CH ) ) -> ( ( _|_ ` ( A i^i B ) ) i^i ( _|_ ` ( A i^i C ) ) ) = ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) ) |
23 |
19 22
|
eqtrd |
|- ( ( ( A e. CH /\ B e. CH ) /\ ( A e. CH /\ C e. CH ) ) -> ( _|_ ` ( ( A i^i B ) vH ( A i^i C ) ) ) = ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) ) |
24 |
17 23
|
ineq12d |
|- ( ( ( A e. CH /\ B e. CH ) /\ ( A e. CH /\ C e. CH ) ) -> ( ( A i^i ( B vH C ) ) i^i ( _|_ ` ( ( A i^i B ) vH ( A i^i C ) ) ) ) = ( ( ( B vH C ) i^i A ) i^i ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) ) ) |
25 |
24
|
3impdi |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( ( A i^i ( B vH C ) ) i^i ( _|_ ` ( ( A i^i B ) vH ( A i^i C ) ) ) ) = ( ( ( B vH C ) i^i A ) i^i ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) ) ) |
26 |
25
|
adantr |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> ( ( A i^i ( B vH C ) ) i^i ( _|_ ` ( ( A i^i B ) vH ( A i^i C ) ) ) ) = ( ( ( B vH C ) i^i A ) i^i ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) ) ) |
27 |
|
inass |
|- ( ( ( B vH C ) i^i A ) i^i ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) ) = ( ( B vH C ) i^i ( A i^i ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) ) ) |
28 |
|
cmcm2 |
|- ( ( A e. CH /\ B e. CH ) -> ( A C_H B <-> A C_H ( _|_ ` B ) ) ) |
29 |
|
choccl |
|- ( B e. CH -> ( _|_ ` B ) e. CH ) |
30 |
|
cmbr3 |
|- ( ( A e. CH /\ ( _|_ ` B ) e. CH ) -> ( A C_H ( _|_ ` B ) <-> ( A i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) = ( A i^i ( _|_ ` B ) ) ) ) |
31 |
29 30
|
sylan2 |
|- ( ( A e. CH /\ B e. CH ) -> ( A C_H ( _|_ ` B ) <-> ( A i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) = ( A i^i ( _|_ ` B ) ) ) ) |
32 |
28 31
|
bitrd |
|- ( ( A e. CH /\ B e. CH ) -> ( A C_H B <-> ( A i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) = ( A i^i ( _|_ ` B ) ) ) ) |
33 |
32
|
biimpa |
|- ( ( ( A e. CH /\ B e. CH ) /\ A C_H B ) -> ( A i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) = ( A i^i ( _|_ ` B ) ) ) |
34 |
33
|
3adantl3 |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ A C_H B ) -> ( A i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) = ( A i^i ( _|_ ` B ) ) ) |
35 |
34
|
adantrr |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> ( A i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) = ( A i^i ( _|_ ` B ) ) ) |
36 |
|
cmcm2 |
|- ( ( A e. CH /\ C e. CH ) -> ( A C_H C <-> A C_H ( _|_ ` C ) ) ) |
37 |
|
choccl |
|- ( C e. CH -> ( _|_ ` C ) e. CH ) |
38 |
|
cmbr3 |
|- ( ( A e. CH /\ ( _|_ ` C ) e. CH ) -> ( A C_H ( _|_ ` C ) <-> ( A i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) = ( A i^i ( _|_ ` C ) ) ) ) |
39 |
37 38
|
sylan2 |
|- ( ( A e. CH /\ C e. CH ) -> ( A C_H ( _|_ ` C ) <-> ( A i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) = ( A i^i ( _|_ ` C ) ) ) ) |
40 |
36 39
|
bitrd |
|- ( ( A e. CH /\ C e. CH ) -> ( A C_H C <-> ( A i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) = ( A i^i ( _|_ ` C ) ) ) ) |
41 |
40
|
biimpa |
|- ( ( ( A e. CH /\ C e. CH ) /\ A C_H C ) -> ( A i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) = ( A i^i ( _|_ ` C ) ) ) |
42 |
41
|
3adantl2 |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ A C_H C ) -> ( A i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) = ( A i^i ( _|_ ` C ) ) ) |
43 |
42
|
adantrl |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> ( A i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) = ( A i^i ( _|_ ` C ) ) ) |
44 |
35 43
|
ineq12d |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> ( ( A i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) i^i ( A i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) ) = ( ( A i^i ( _|_ ` B ) ) i^i ( A i^i ( _|_ ` C ) ) ) ) |
45 |
|
inindi |
|- ( A i^i ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) ) = ( ( A i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) i^i ( A i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) ) |
46 |
|
inindi |
|- ( A i^i ( ( _|_ ` B ) i^i ( _|_ ` C ) ) ) = ( ( A i^i ( _|_ ` B ) ) i^i ( A i^i ( _|_ ` C ) ) ) |
47 |
44 45 46
|
3eqtr4g |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> ( A i^i ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) ) = ( A i^i ( ( _|_ ` B ) i^i ( _|_ ` C ) ) ) ) |
48 |
47
|
ineq2d |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> ( ( B vH C ) i^i ( A i^i ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) ) ) = ( ( B vH C ) i^i ( A i^i ( ( _|_ ` B ) i^i ( _|_ ` C ) ) ) ) ) |
49 |
27 48
|
eqtrid |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> ( ( ( B vH C ) i^i A ) i^i ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) ) = ( ( B vH C ) i^i ( A i^i ( ( _|_ ` B ) i^i ( _|_ ` C ) ) ) ) ) |
50 |
|
in12 |
|- ( ( B vH C ) i^i ( A i^i ( ( _|_ ` B ) i^i ( _|_ ` C ) ) ) ) = ( A i^i ( ( B vH C ) i^i ( ( _|_ ` B ) i^i ( _|_ ` C ) ) ) ) |
51 |
49 50
|
eqtrdi |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> ( ( ( B vH C ) i^i A ) i^i ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) ) = ( A i^i ( ( B vH C ) i^i ( ( _|_ ` B ) i^i ( _|_ ` C ) ) ) ) ) |
52 |
|
chdmj1 |
|- ( ( B e. CH /\ C e. CH ) -> ( _|_ ` ( B vH C ) ) = ( ( _|_ ` B ) i^i ( _|_ ` C ) ) ) |
53 |
52
|
ineq2d |
|- ( ( B e. CH /\ C e. CH ) -> ( ( B vH C ) i^i ( _|_ ` ( B vH C ) ) ) = ( ( B vH C ) i^i ( ( _|_ ` B ) i^i ( _|_ ` C ) ) ) ) |
54 |
|
chocin |
|- ( ( B vH C ) e. CH -> ( ( B vH C ) i^i ( _|_ ` ( B vH C ) ) ) = 0H ) |
55 |
6 54
|
syl |
|- ( ( B e. CH /\ C e. CH ) -> ( ( B vH C ) i^i ( _|_ ` ( B vH C ) ) ) = 0H ) |
56 |
53 55
|
eqtr3d |
|- ( ( B e. CH /\ C e. CH ) -> ( ( B vH C ) i^i ( ( _|_ ` B ) i^i ( _|_ ` C ) ) ) = 0H ) |
57 |
56
|
ineq2d |
|- ( ( B e. CH /\ C e. CH ) -> ( A i^i ( ( B vH C ) i^i ( ( _|_ ` B ) i^i ( _|_ ` C ) ) ) ) = ( A i^i 0H ) ) |
58 |
|
chm0 |
|- ( A e. CH -> ( A i^i 0H ) = 0H ) |
59 |
57 58
|
sylan9eqr |
|- ( ( A e. CH /\ ( B e. CH /\ C e. CH ) ) -> ( A i^i ( ( B vH C ) i^i ( ( _|_ ` B ) i^i ( _|_ ` C ) ) ) ) = 0H ) |
60 |
59
|
3impb |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( A i^i ( ( B vH C ) i^i ( ( _|_ ` B ) i^i ( _|_ ` C ) ) ) ) = 0H ) |
61 |
60
|
adantr |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> ( A i^i ( ( B vH C ) i^i ( ( _|_ ` B ) i^i ( _|_ ` C ) ) ) ) = 0H ) |
62 |
51 61
|
eqtrd |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> ( ( ( B vH C ) i^i A ) i^i ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( _|_ ` A ) vH ( _|_ ` C ) ) ) ) = 0H ) |
63 |
26 62
|
eqtrd |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> ( ( A i^i ( B vH C ) ) i^i ( _|_ ` ( ( A i^i B ) vH ( A i^i C ) ) ) ) = 0H ) |
64 |
|
pjoml |
|- ( ( ( ( ( A i^i B ) vH ( A i^i C ) ) e. CH /\ ( A i^i ( B vH C ) ) e. SH ) /\ ( ( ( A i^i B ) vH ( A i^i C ) ) C_ ( A i^i ( B vH C ) ) /\ ( ( A i^i ( B vH C ) ) i^i ( _|_ ` ( ( A i^i B ) vH ( A i^i C ) ) ) ) = 0H ) ) -> ( ( A i^i B ) vH ( A i^i C ) ) = ( A i^i ( B vH C ) ) ) |
65 |
13 15 63 64
|
syl12anc |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> ( ( A i^i B ) vH ( A i^i C ) ) = ( A i^i ( B vH C ) ) ) |
66 |
65
|
eqcomd |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> ( A i^i ( B vH C ) ) = ( ( A i^i B ) vH ( A i^i C ) ) ) |