| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chincl |
|
| 2 |
|
chincl |
|
| 3 |
|
chjcl |
|
| 4 |
1 2 3
|
syl2an |
|
| 5 |
4
|
anandis |
|
| 6 |
|
chjcl |
|
| 7 |
|
chincl |
|
| 8 |
6 7
|
sylan2 |
|
| 9 |
|
chsh |
|
| 10 |
8 9
|
syl |
|
| 11 |
5 10
|
jca |
|
| 12 |
11
|
3impb |
|
| 13 |
12
|
adantr |
|
| 14 |
|
ledi |
|
| 15 |
14
|
adantr |
|
| 16 |
|
incom |
|
| 17 |
16
|
a1i |
|
| 18 |
|
chdmj1 |
|
| 19 |
1 2 18
|
syl2an |
|
| 20 |
|
chdmm1 |
|
| 21 |
|
chdmm1 |
|
| 22 |
20 21
|
ineqan12d |
|
| 23 |
19 22
|
eqtrd |
|
| 24 |
17 23
|
ineq12d |
|
| 25 |
24
|
3impdi |
|
| 26 |
25
|
adantr |
|
| 27 |
|
inass |
|
| 28 |
|
cmcm2 |
|
| 29 |
|
choccl |
|
| 30 |
|
cmbr3 |
|
| 31 |
29 30
|
sylan2 |
|
| 32 |
28 31
|
bitrd |
|
| 33 |
32
|
biimpa |
|
| 34 |
33
|
3adantl3 |
|
| 35 |
34
|
adantrr |
|
| 36 |
|
cmcm2 |
|
| 37 |
|
choccl |
|
| 38 |
|
cmbr3 |
|
| 39 |
37 38
|
sylan2 |
|
| 40 |
36 39
|
bitrd |
|
| 41 |
40
|
biimpa |
|
| 42 |
41
|
3adantl2 |
|
| 43 |
42
|
adantrl |
|
| 44 |
35 43
|
ineq12d |
|
| 45 |
|
inindi |
|
| 46 |
|
inindi |
|
| 47 |
44 45 46
|
3eqtr4g |
|
| 48 |
47
|
ineq2d |
|
| 49 |
27 48
|
eqtrid |
|
| 50 |
|
in12 |
|
| 51 |
49 50
|
eqtrdi |
|
| 52 |
|
chdmj1 |
|
| 53 |
52
|
ineq2d |
|
| 54 |
|
chocin |
|
| 55 |
6 54
|
syl |
|
| 56 |
53 55
|
eqtr3d |
|
| 57 |
56
|
ineq2d |
|
| 58 |
|
chm0 |
|
| 59 |
57 58
|
sylan9eqr |
|
| 60 |
59
|
3impb |
|
| 61 |
60
|
adantr |
|
| 62 |
51 61
|
eqtrd |
|
| 63 |
26 62
|
eqtrd |
|
| 64 |
|
pjoml |
|
| 65 |
13 15 63 64
|
syl12anc |
|
| 66 |
65
|
eqcomd |
|