Metamath Proof Explorer


Theorem cmbr3

Description: Alternate definition for the commutes relation. Lemma 3 of Kalmbach p. 23. (Contributed by NM, 14-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion cmbr3 ACBCA𝐶BAAB=AB

Proof

Step Hyp Ref Expression
1 breq1 A=ifACA0A𝐶BifACA0𝐶B
2 id A=ifACA0A=ifACA0
3 fveq2 A=ifACA0A=ifACA0
4 3 oveq1d A=ifACA0AB=ifACA0B
5 2 4 ineq12d A=ifACA0AAB=ifACA0ifACA0B
6 ineq1 A=ifACA0AB=ifACA0B
7 5 6 eqeq12d A=ifACA0AAB=ABifACA0ifACA0B=ifACA0B
8 1 7 bibi12d A=ifACA0A𝐶BAAB=ABifACA0𝐶BifACA0ifACA0B=ifACA0B
9 breq2 B=ifBCB0ifACA0𝐶BifACA0𝐶ifBCB0
10 oveq2 B=ifBCB0ifACA0B=ifACA0ifBCB0
11 10 ineq2d B=ifBCB0ifACA0ifACA0B=ifACA0ifACA0ifBCB0
12 ineq2 B=ifBCB0ifACA0B=ifACA0ifBCB0
13 11 12 eqeq12d B=ifBCB0ifACA0ifACA0B=ifACA0BifACA0ifACA0ifBCB0=ifACA0ifBCB0
14 9 13 bibi12d B=ifBCB0ifACA0𝐶BifACA0ifACA0B=ifACA0BifACA0𝐶ifBCB0ifACA0ifACA0ifBCB0=ifACA0ifBCB0
15 h0elch 0C
16 15 elimel ifACA0C
17 15 elimel ifBCB0C
18 16 17 cmbr3i ifACA0𝐶ifBCB0ifACA0ifACA0ifBCB0=ifACA0ifBCB0
19 8 14 18 dedth2h ACBCA𝐶BAAB=AB