| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chincl |
|
| 2 |
|
chincl |
|
| 3 |
|
chjcl |
|
| 4 |
1 2 3
|
syl2an |
|
| 5 |
4
|
anandis |
|
| 6 |
|
chjcl |
|
| 7 |
|
chincl |
|
| 8 |
6 7
|
sylan2 |
|
| 9 |
|
chsh |
|
| 10 |
8 9
|
syl |
|
| 11 |
5 10
|
jca |
|
| 12 |
11
|
3impb |
|
| 13 |
12
|
adantr |
|
| 14 |
|
ledi |
|
| 15 |
14
|
adantr |
|
| 16 |
|
chdmj1 |
|
| 17 |
1 2 16
|
syl2an |
|
| 18 |
|
chdmm1 |
|
| 19 |
18
|
adantr |
|
| 20 |
19
|
ineq1d |
|
| 21 |
17 20
|
eqtrd |
|
| 22 |
21
|
3impdi |
|
| 23 |
22
|
ineq2d |
|
| 24 |
23
|
adantr |
|
| 25 |
|
in4 |
|
| 26 |
|
cmcm2 |
|
| 27 |
|
cmcm |
|
| 28 |
|
choccl |
|
| 29 |
|
cmbr3 |
|
| 30 |
28 29
|
sylan2 |
|
| 31 |
26 27 30
|
3bitr3d |
|
| 32 |
31
|
biimpa |
|
| 33 |
|
incom |
|
| 34 |
32 33
|
eqtrdi |
|
| 35 |
34
|
3adantl3 |
|
| 36 |
35
|
adantrr |
|
| 37 |
36
|
ineq1d |
|
| 38 |
25 37
|
eqtrid |
|
| 39 |
24 38
|
eqtrd |
|
| 40 |
|
in4 |
|
| 41 |
39 40
|
eqtrdi |
|
| 42 |
|
ococ |
|
| 43 |
42
|
oveq1d |
|
| 44 |
43
|
ineq2d |
|
| 45 |
44
|
3ad2ant2 |
|
| 46 |
45
|
adantr |
|
| 47 |
|
cmcm3 |
|
| 48 |
|
cmbr3 |
|
| 49 |
28 48
|
sylan |
|
| 50 |
47 49
|
bitrd |
|
| 51 |
50
|
biimpa |
|
| 52 |
51
|
3adantl1 |
|
| 53 |
52
|
adantrl |
|
| 54 |
46 53
|
eqtr3d |
|
| 55 |
54
|
ineq1d |
|
| 56 |
|
inass |
|
| 57 |
|
in12 |
|
| 58 |
|
inass |
|
| 59 |
57 58
|
eqtr4i |
|
| 60 |
|
chocin |
|
| 61 |
2 60
|
syl |
|
| 62 |
59 61
|
eqtrid |
|
| 63 |
62
|
ineq2d |
|
| 64 |
56 63
|
eqtrid |
|
| 65 |
64
|
3adant2 |
|
| 66 |
|
chm0 |
|
| 67 |
28 66
|
syl |
|
| 68 |
67
|
3ad2ant2 |
|
| 69 |
65 68
|
eqtrd |
|
| 70 |
69
|
adantr |
|
| 71 |
55 70
|
eqtrd |
|
| 72 |
41 71
|
eqtrd |
|
| 73 |
|
pjoml |
|
| 74 |
13 15 72 73
|
syl12anc |
|
| 75 |
74
|
eqcomd |
|