| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chincl |
|- ( ( A e. CH /\ B e. CH ) -> ( A i^i B ) e. CH ) |
| 2 |
|
chincl |
|- ( ( A e. CH /\ C e. CH ) -> ( A i^i C ) e. CH ) |
| 3 |
|
chjcl |
|- ( ( ( A i^i B ) e. CH /\ ( A i^i C ) e. CH ) -> ( ( A i^i B ) vH ( A i^i C ) ) e. CH ) |
| 4 |
1 2 3
|
syl2an |
|- ( ( ( A e. CH /\ B e. CH ) /\ ( A e. CH /\ C e. CH ) ) -> ( ( A i^i B ) vH ( A i^i C ) ) e. CH ) |
| 5 |
4
|
anandis |
|- ( ( A e. CH /\ ( B e. CH /\ C e. CH ) ) -> ( ( A i^i B ) vH ( A i^i C ) ) e. CH ) |
| 6 |
|
chjcl |
|- ( ( B e. CH /\ C e. CH ) -> ( B vH C ) e. CH ) |
| 7 |
|
chincl |
|- ( ( A e. CH /\ ( B vH C ) e. CH ) -> ( A i^i ( B vH C ) ) e. CH ) |
| 8 |
6 7
|
sylan2 |
|- ( ( A e. CH /\ ( B e. CH /\ C e. CH ) ) -> ( A i^i ( B vH C ) ) e. CH ) |
| 9 |
|
chsh |
|- ( ( A i^i ( B vH C ) ) e. CH -> ( A i^i ( B vH C ) ) e. SH ) |
| 10 |
8 9
|
syl |
|- ( ( A e. CH /\ ( B e. CH /\ C e. CH ) ) -> ( A i^i ( B vH C ) ) e. SH ) |
| 11 |
5 10
|
jca |
|- ( ( A e. CH /\ ( B e. CH /\ C e. CH ) ) -> ( ( ( A i^i B ) vH ( A i^i C ) ) e. CH /\ ( A i^i ( B vH C ) ) e. SH ) ) |
| 12 |
11
|
3impb |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( ( ( A i^i B ) vH ( A i^i C ) ) e. CH /\ ( A i^i ( B vH C ) ) e. SH ) ) |
| 13 |
12
|
adantr |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( B C_H A /\ B C_H C ) ) -> ( ( ( A i^i B ) vH ( A i^i C ) ) e. CH /\ ( A i^i ( B vH C ) ) e. SH ) ) |
| 14 |
|
ledi |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( ( A i^i B ) vH ( A i^i C ) ) C_ ( A i^i ( B vH C ) ) ) |
| 15 |
14
|
adantr |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( B C_H A /\ B C_H C ) ) -> ( ( A i^i B ) vH ( A i^i C ) ) C_ ( A i^i ( B vH C ) ) ) |
| 16 |
|
chdmj1 |
|- ( ( ( A i^i B ) e. CH /\ ( A i^i C ) e. CH ) -> ( _|_ ` ( ( A i^i B ) vH ( A i^i C ) ) ) = ( ( _|_ ` ( A i^i B ) ) i^i ( _|_ ` ( A i^i C ) ) ) ) |
| 17 |
1 2 16
|
syl2an |
|- ( ( ( A e. CH /\ B e. CH ) /\ ( A e. CH /\ C e. CH ) ) -> ( _|_ ` ( ( A i^i B ) vH ( A i^i C ) ) ) = ( ( _|_ ` ( A i^i B ) ) i^i ( _|_ ` ( A i^i C ) ) ) ) |
| 18 |
|
chdmm1 |
|- ( ( A e. CH /\ B e. CH ) -> ( _|_ ` ( A i^i B ) ) = ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) |
| 19 |
18
|
adantr |
|- ( ( ( A e. CH /\ B e. CH ) /\ ( A e. CH /\ C e. CH ) ) -> ( _|_ ` ( A i^i B ) ) = ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) |
| 20 |
19
|
ineq1d |
|- ( ( ( A e. CH /\ B e. CH ) /\ ( A e. CH /\ C e. CH ) ) -> ( ( _|_ ` ( A i^i B ) ) i^i ( _|_ ` ( A i^i C ) ) ) = ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( _|_ ` ( A i^i C ) ) ) ) |
| 21 |
17 20
|
eqtrd |
|- ( ( ( A e. CH /\ B e. CH ) /\ ( A e. CH /\ C e. CH ) ) -> ( _|_ ` ( ( A i^i B ) vH ( A i^i C ) ) ) = ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( _|_ ` ( A i^i C ) ) ) ) |
| 22 |
21
|
3impdi |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( _|_ ` ( ( A i^i B ) vH ( A i^i C ) ) ) = ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( _|_ ` ( A i^i C ) ) ) ) |
| 23 |
22
|
ineq2d |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( ( A i^i ( B vH C ) ) i^i ( _|_ ` ( ( A i^i B ) vH ( A i^i C ) ) ) ) = ( ( A i^i ( B vH C ) ) i^i ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( _|_ ` ( A i^i C ) ) ) ) ) |
| 24 |
23
|
adantr |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( B C_H A /\ B C_H C ) ) -> ( ( A i^i ( B vH C ) ) i^i ( _|_ ` ( ( A i^i B ) vH ( A i^i C ) ) ) ) = ( ( A i^i ( B vH C ) ) i^i ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( _|_ ` ( A i^i C ) ) ) ) ) |
| 25 |
|
in4 |
|- ( ( A i^i ( B vH C ) ) i^i ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( _|_ ` ( A i^i C ) ) ) ) = ( ( A i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) i^i ( ( B vH C ) i^i ( _|_ ` ( A i^i C ) ) ) ) |
| 26 |
|
cmcm2 |
|- ( ( A e. CH /\ B e. CH ) -> ( A C_H B <-> A C_H ( _|_ ` B ) ) ) |
| 27 |
|
cmcm |
|- ( ( A e. CH /\ B e. CH ) -> ( A C_H B <-> B C_H A ) ) |
| 28 |
|
choccl |
|- ( B e. CH -> ( _|_ ` B ) e. CH ) |
| 29 |
|
cmbr3 |
|- ( ( A e. CH /\ ( _|_ ` B ) e. CH ) -> ( A C_H ( _|_ ` B ) <-> ( A i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) = ( A i^i ( _|_ ` B ) ) ) ) |
| 30 |
28 29
|
sylan2 |
|- ( ( A e. CH /\ B e. CH ) -> ( A C_H ( _|_ ` B ) <-> ( A i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) = ( A i^i ( _|_ ` B ) ) ) ) |
| 31 |
26 27 30
|
3bitr3d |
|- ( ( A e. CH /\ B e. CH ) -> ( B C_H A <-> ( A i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) = ( A i^i ( _|_ ` B ) ) ) ) |
| 32 |
31
|
biimpa |
|- ( ( ( A e. CH /\ B e. CH ) /\ B C_H A ) -> ( A i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) = ( A i^i ( _|_ ` B ) ) ) |
| 33 |
|
incom |
|- ( A i^i ( _|_ ` B ) ) = ( ( _|_ ` B ) i^i A ) |
| 34 |
32 33
|
eqtrdi |
|- ( ( ( A e. CH /\ B e. CH ) /\ B C_H A ) -> ( A i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) = ( ( _|_ ` B ) i^i A ) ) |
| 35 |
34
|
3adantl3 |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ B C_H A ) -> ( A i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) = ( ( _|_ ` B ) i^i A ) ) |
| 36 |
35
|
adantrr |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( B C_H A /\ B C_H C ) ) -> ( A i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) = ( ( _|_ ` B ) i^i A ) ) |
| 37 |
36
|
ineq1d |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( B C_H A /\ B C_H C ) ) -> ( ( A i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) i^i ( ( B vH C ) i^i ( _|_ ` ( A i^i C ) ) ) ) = ( ( ( _|_ ` B ) i^i A ) i^i ( ( B vH C ) i^i ( _|_ ` ( A i^i C ) ) ) ) ) |
| 38 |
25 37
|
eqtrid |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( B C_H A /\ B C_H C ) ) -> ( ( A i^i ( B vH C ) ) i^i ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( _|_ ` ( A i^i C ) ) ) ) = ( ( ( _|_ ` B ) i^i A ) i^i ( ( B vH C ) i^i ( _|_ ` ( A i^i C ) ) ) ) ) |
| 39 |
24 38
|
eqtrd |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( B C_H A /\ B C_H C ) ) -> ( ( A i^i ( B vH C ) ) i^i ( _|_ ` ( ( A i^i B ) vH ( A i^i C ) ) ) ) = ( ( ( _|_ ` B ) i^i A ) i^i ( ( B vH C ) i^i ( _|_ ` ( A i^i C ) ) ) ) ) |
| 40 |
|
in4 |
|- ( ( ( _|_ ` B ) i^i A ) i^i ( ( B vH C ) i^i ( _|_ ` ( A i^i C ) ) ) ) = ( ( ( _|_ ` B ) i^i ( B vH C ) ) i^i ( A i^i ( _|_ ` ( A i^i C ) ) ) ) |
| 41 |
39 40
|
eqtrdi |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( B C_H A /\ B C_H C ) ) -> ( ( A i^i ( B vH C ) ) i^i ( _|_ ` ( ( A i^i B ) vH ( A i^i C ) ) ) ) = ( ( ( _|_ ` B ) i^i ( B vH C ) ) i^i ( A i^i ( _|_ ` ( A i^i C ) ) ) ) ) |
| 42 |
|
ococ |
|- ( B e. CH -> ( _|_ ` ( _|_ ` B ) ) = B ) |
| 43 |
42
|
oveq1d |
|- ( B e. CH -> ( ( _|_ ` ( _|_ ` B ) ) vH C ) = ( B vH C ) ) |
| 44 |
43
|
ineq2d |
|- ( B e. CH -> ( ( _|_ ` B ) i^i ( ( _|_ ` ( _|_ ` B ) ) vH C ) ) = ( ( _|_ ` B ) i^i ( B vH C ) ) ) |
| 45 |
44
|
3ad2ant2 |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( ( _|_ ` B ) i^i ( ( _|_ ` ( _|_ ` B ) ) vH C ) ) = ( ( _|_ ` B ) i^i ( B vH C ) ) ) |
| 46 |
45
|
adantr |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( B C_H A /\ B C_H C ) ) -> ( ( _|_ ` B ) i^i ( ( _|_ ` ( _|_ ` B ) ) vH C ) ) = ( ( _|_ ` B ) i^i ( B vH C ) ) ) |
| 47 |
|
cmcm3 |
|- ( ( B e. CH /\ C e. CH ) -> ( B C_H C <-> ( _|_ ` B ) C_H C ) ) |
| 48 |
|
cmbr3 |
|- ( ( ( _|_ ` B ) e. CH /\ C e. CH ) -> ( ( _|_ ` B ) C_H C <-> ( ( _|_ ` B ) i^i ( ( _|_ ` ( _|_ ` B ) ) vH C ) ) = ( ( _|_ ` B ) i^i C ) ) ) |
| 49 |
28 48
|
sylan |
|- ( ( B e. CH /\ C e. CH ) -> ( ( _|_ ` B ) C_H C <-> ( ( _|_ ` B ) i^i ( ( _|_ ` ( _|_ ` B ) ) vH C ) ) = ( ( _|_ ` B ) i^i C ) ) ) |
| 50 |
47 49
|
bitrd |
|- ( ( B e. CH /\ C e. CH ) -> ( B C_H C <-> ( ( _|_ ` B ) i^i ( ( _|_ ` ( _|_ ` B ) ) vH C ) ) = ( ( _|_ ` B ) i^i C ) ) ) |
| 51 |
50
|
biimpa |
|- ( ( ( B e. CH /\ C e. CH ) /\ B C_H C ) -> ( ( _|_ ` B ) i^i ( ( _|_ ` ( _|_ ` B ) ) vH C ) ) = ( ( _|_ ` B ) i^i C ) ) |
| 52 |
51
|
3adantl1 |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ B C_H C ) -> ( ( _|_ ` B ) i^i ( ( _|_ ` ( _|_ ` B ) ) vH C ) ) = ( ( _|_ ` B ) i^i C ) ) |
| 53 |
52
|
adantrl |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( B C_H A /\ B C_H C ) ) -> ( ( _|_ ` B ) i^i ( ( _|_ ` ( _|_ ` B ) ) vH C ) ) = ( ( _|_ ` B ) i^i C ) ) |
| 54 |
46 53
|
eqtr3d |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( B C_H A /\ B C_H C ) ) -> ( ( _|_ ` B ) i^i ( B vH C ) ) = ( ( _|_ ` B ) i^i C ) ) |
| 55 |
54
|
ineq1d |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( B C_H A /\ B C_H C ) ) -> ( ( ( _|_ ` B ) i^i ( B vH C ) ) i^i ( A i^i ( _|_ ` ( A i^i C ) ) ) ) = ( ( ( _|_ ` B ) i^i C ) i^i ( A i^i ( _|_ ` ( A i^i C ) ) ) ) ) |
| 56 |
|
inass |
|- ( ( ( _|_ ` B ) i^i C ) i^i ( A i^i ( _|_ ` ( A i^i C ) ) ) ) = ( ( _|_ ` B ) i^i ( C i^i ( A i^i ( _|_ ` ( A i^i C ) ) ) ) ) |
| 57 |
|
in12 |
|- ( C i^i ( A i^i ( _|_ ` ( A i^i C ) ) ) ) = ( A i^i ( C i^i ( _|_ ` ( A i^i C ) ) ) ) |
| 58 |
|
inass |
|- ( ( A i^i C ) i^i ( _|_ ` ( A i^i C ) ) ) = ( A i^i ( C i^i ( _|_ ` ( A i^i C ) ) ) ) |
| 59 |
57 58
|
eqtr4i |
|- ( C i^i ( A i^i ( _|_ ` ( A i^i C ) ) ) ) = ( ( A i^i C ) i^i ( _|_ ` ( A i^i C ) ) ) |
| 60 |
|
chocin |
|- ( ( A i^i C ) e. CH -> ( ( A i^i C ) i^i ( _|_ ` ( A i^i C ) ) ) = 0H ) |
| 61 |
2 60
|
syl |
|- ( ( A e. CH /\ C e. CH ) -> ( ( A i^i C ) i^i ( _|_ ` ( A i^i C ) ) ) = 0H ) |
| 62 |
59 61
|
eqtrid |
|- ( ( A e. CH /\ C e. CH ) -> ( C i^i ( A i^i ( _|_ ` ( A i^i C ) ) ) ) = 0H ) |
| 63 |
62
|
ineq2d |
|- ( ( A e. CH /\ C e. CH ) -> ( ( _|_ ` B ) i^i ( C i^i ( A i^i ( _|_ ` ( A i^i C ) ) ) ) ) = ( ( _|_ ` B ) i^i 0H ) ) |
| 64 |
56 63
|
eqtrid |
|- ( ( A e. CH /\ C e. CH ) -> ( ( ( _|_ ` B ) i^i C ) i^i ( A i^i ( _|_ ` ( A i^i C ) ) ) ) = ( ( _|_ ` B ) i^i 0H ) ) |
| 65 |
64
|
3adant2 |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( ( ( _|_ ` B ) i^i C ) i^i ( A i^i ( _|_ ` ( A i^i C ) ) ) ) = ( ( _|_ ` B ) i^i 0H ) ) |
| 66 |
|
chm0 |
|- ( ( _|_ ` B ) e. CH -> ( ( _|_ ` B ) i^i 0H ) = 0H ) |
| 67 |
28 66
|
syl |
|- ( B e. CH -> ( ( _|_ ` B ) i^i 0H ) = 0H ) |
| 68 |
67
|
3ad2ant2 |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( ( _|_ ` B ) i^i 0H ) = 0H ) |
| 69 |
65 68
|
eqtrd |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( ( ( _|_ ` B ) i^i C ) i^i ( A i^i ( _|_ ` ( A i^i C ) ) ) ) = 0H ) |
| 70 |
69
|
adantr |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( B C_H A /\ B C_H C ) ) -> ( ( ( _|_ ` B ) i^i C ) i^i ( A i^i ( _|_ ` ( A i^i C ) ) ) ) = 0H ) |
| 71 |
55 70
|
eqtrd |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( B C_H A /\ B C_H C ) ) -> ( ( ( _|_ ` B ) i^i ( B vH C ) ) i^i ( A i^i ( _|_ ` ( A i^i C ) ) ) ) = 0H ) |
| 72 |
41 71
|
eqtrd |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( B C_H A /\ B C_H C ) ) -> ( ( A i^i ( B vH C ) ) i^i ( _|_ ` ( ( A i^i B ) vH ( A i^i C ) ) ) ) = 0H ) |
| 73 |
|
pjoml |
|- ( ( ( ( ( A i^i B ) vH ( A i^i C ) ) e. CH /\ ( A i^i ( B vH C ) ) e. SH ) /\ ( ( ( A i^i B ) vH ( A i^i C ) ) C_ ( A i^i ( B vH C ) ) /\ ( ( A i^i ( B vH C ) ) i^i ( _|_ ` ( ( A i^i B ) vH ( A i^i C ) ) ) ) = 0H ) ) -> ( ( A i^i B ) vH ( A i^i C ) ) = ( A i^i ( B vH C ) ) ) |
| 74 |
13 15 72 73
|
syl12anc |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( B C_H A /\ B C_H C ) ) -> ( ( A i^i B ) vH ( A i^i C ) ) = ( A i^i ( B vH C ) ) ) |
| 75 |
74
|
eqcomd |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( B C_H A /\ B C_H C ) ) -> ( A i^i ( B vH C ) ) = ( ( A i^i B ) vH ( A i^i C ) ) ) |