| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chirred.1 |  |-  A e. CH | 
						
							| 2 |  | chirred.2 |  |-  ( x e. CH -> A C_H x ) | 
						
							| 3 |  | eqid |  |-  0H = 0H | 
						
							| 4 |  | ioran |  |-  ( -. ( A = 0H \/ ( _|_ ` A ) = 0H ) <-> ( -. A = 0H /\ -. ( _|_ ` A ) = 0H ) ) | 
						
							| 5 |  | df-ne |  |-  ( A =/= 0H <-> -. A = 0H ) | 
						
							| 6 |  | df-ne |  |-  ( ( _|_ ` A ) =/= 0H <-> -. ( _|_ ` A ) = 0H ) | 
						
							| 7 | 5 6 | anbi12i |  |-  ( ( A =/= 0H /\ ( _|_ ` A ) =/= 0H ) <-> ( -. A = 0H /\ -. ( _|_ ` A ) = 0H ) ) | 
						
							| 8 | 4 7 | bitr4i |  |-  ( -. ( A = 0H \/ ( _|_ ` A ) = 0H ) <-> ( A =/= 0H /\ ( _|_ ` A ) =/= 0H ) ) | 
						
							| 9 | 1 | hatomici |  |-  ( A =/= 0H -> E. p e. HAtoms p C_ A ) | 
						
							| 10 | 1 | choccli |  |-  ( _|_ ` A ) e. CH | 
						
							| 11 | 10 | hatomici |  |-  ( ( _|_ ` A ) =/= 0H -> E. q e. HAtoms q C_ ( _|_ ` A ) ) | 
						
							| 12 | 9 11 | anim12i |  |-  ( ( A =/= 0H /\ ( _|_ ` A ) =/= 0H ) -> ( E. p e. HAtoms p C_ A /\ E. q e. HAtoms q C_ ( _|_ ` A ) ) ) | 
						
							| 13 |  | reeanv |  |-  ( E. p e. HAtoms E. q e. HAtoms ( p C_ A /\ q C_ ( _|_ ` A ) ) <-> ( E. p e. HAtoms p C_ A /\ E. q e. HAtoms q C_ ( _|_ ` A ) ) ) | 
						
							| 14 | 12 13 | sylibr |  |-  ( ( A =/= 0H /\ ( _|_ ` A ) =/= 0H ) -> E. p e. HAtoms E. q e. HAtoms ( p C_ A /\ q C_ ( _|_ ` A ) ) ) | 
						
							| 15 |  | simpll |  |-  ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) ) -> p e. HAtoms ) | 
						
							| 16 |  | simprl |  |-  ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) ) -> q e. HAtoms ) | 
						
							| 17 |  | atelch |  |-  ( p e. HAtoms -> p e. CH ) | 
						
							| 18 |  | chsscon3 |  |-  ( ( p e. CH /\ A e. CH ) -> ( p C_ A <-> ( _|_ ` A ) C_ ( _|_ ` p ) ) ) | 
						
							| 19 | 17 1 18 | sylancl |  |-  ( p e. HAtoms -> ( p C_ A <-> ( _|_ ` A ) C_ ( _|_ ` p ) ) ) | 
						
							| 20 | 19 | biimpa |  |-  ( ( p e. HAtoms /\ p C_ A ) -> ( _|_ ` A ) C_ ( _|_ ` p ) ) | 
						
							| 21 |  | sstr |  |-  ( ( q C_ ( _|_ ` A ) /\ ( _|_ ` A ) C_ ( _|_ ` p ) ) -> q C_ ( _|_ ` p ) ) | 
						
							| 22 | 20 21 | sylan2 |  |-  ( ( q C_ ( _|_ ` A ) /\ ( p e. HAtoms /\ p C_ A ) ) -> q C_ ( _|_ ` p ) ) | 
						
							| 23 | 22 | ancoms |  |-  ( ( ( p e. HAtoms /\ p C_ A ) /\ q C_ ( _|_ ` A ) ) -> q C_ ( _|_ ` p ) ) | 
						
							| 24 |  | atne0 |  |-  ( p e. HAtoms -> p =/= 0H ) | 
						
							| 25 | 24 | adantr |  |-  ( ( p e. HAtoms /\ q C_ ( _|_ ` p ) ) -> p =/= 0H ) | 
						
							| 26 |  | sseq1 |  |-  ( p = q -> ( p C_ ( _|_ ` p ) <-> q C_ ( _|_ ` p ) ) ) | 
						
							| 27 | 26 | bicomd |  |-  ( p = q -> ( q C_ ( _|_ ` p ) <-> p C_ ( _|_ ` p ) ) ) | 
						
							| 28 |  | chssoc |  |-  ( p e. CH -> ( p C_ ( _|_ ` p ) <-> p = 0H ) ) | 
						
							| 29 | 17 28 | syl |  |-  ( p e. HAtoms -> ( p C_ ( _|_ ` p ) <-> p = 0H ) ) | 
						
							| 30 | 27 29 | sylan9bbr |  |-  ( ( p e. HAtoms /\ p = q ) -> ( q C_ ( _|_ ` p ) <-> p = 0H ) ) | 
						
							| 31 | 30 | biimpa |  |-  ( ( ( p e. HAtoms /\ p = q ) /\ q C_ ( _|_ ` p ) ) -> p = 0H ) | 
						
							| 32 | 31 | an32s |  |-  ( ( ( p e. HAtoms /\ q C_ ( _|_ ` p ) ) /\ p = q ) -> p = 0H ) | 
						
							| 33 | 32 | ex |  |-  ( ( p e. HAtoms /\ q C_ ( _|_ ` p ) ) -> ( p = q -> p = 0H ) ) | 
						
							| 34 | 33 | necon3d |  |-  ( ( p e. HAtoms /\ q C_ ( _|_ ` p ) ) -> ( p =/= 0H -> p =/= q ) ) | 
						
							| 35 | 25 34 | mpd |  |-  ( ( p e. HAtoms /\ q C_ ( _|_ ` p ) ) -> p =/= q ) | 
						
							| 36 | 35 | adantlr |  |-  ( ( ( p e. HAtoms /\ p C_ A ) /\ q C_ ( _|_ ` p ) ) -> p =/= q ) | 
						
							| 37 | 23 36 | syldan |  |-  ( ( ( p e. HAtoms /\ p C_ A ) /\ q C_ ( _|_ ` A ) ) -> p =/= q ) | 
						
							| 38 | 37 | adantrl |  |-  ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) ) -> p =/= q ) | 
						
							| 39 |  | superpos |  |-  ( ( p e. HAtoms /\ q e. HAtoms /\ p =/= q ) -> E. r e. HAtoms ( r =/= p /\ r =/= q /\ r C_ ( p vH q ) ) ) | 
						
							| 40 | 15 16 38 39 | syl3anc |  |-  ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) ) -> E. r e. HAtoms ( r =/= p /\ r =/= q /\ r C_ ( p vH q ) ) ) | 
						
							| 41 |  | df-3an |  |-  ( ( r =/= p /\ r =/= q /\ r C_ ( p vH q ) ) <-> ( ( r =/= p /\ r =/= q ) /\ r C_ ( p vH q ) ) ) | 
						
							| 42 |  | neanior |  |-  ( ( r =/= p /\ r =/= q ) <-> -. ( r = p \/ r = q ) ) | 
						
							| 43 | 42 | anbi1i |  |-  ( ( ( r =/= p /\ r =/= q ) /\ r C_ ( p vH q ) ) <-> ( -. ( r = p \/ r = q ) /\ r C_ ( p vH q ) ) ) | 
						
							| 44 | 41 43 | bitri |  |-  ( ( r =/= p /\ r =/= q /\ r C_ ( p vH q ) ) <-> ( -. ( r = p \/ r = q ) /\ r C_ ( p vH q ) ) ) | 
						
							| 45 | 1 2 | chirredlem4 |  |-  ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) ) /\ ( r e. HAtoms /\ r C_ ( p vH q ) ) ) -> ( r = p \/ r = q ) ) | 
						
							| 46 | 45 | anassrs |  |-  ( ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) ) /\ r e. HAtoms ) /\ r C_ ( p vH q ) ) -> ( r = p \/ r = q ) ) | 
						
							| 47 | 46 | pm2.24d |  |-  ( ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) ) /\ r e. HAtoms ) /\ r C_ ( p vH q ) ) -> ( -. ( r = p \/ r = q ) -> -. 0H = 0H ) ) | 
						
							| 48 | 47 | ex |  |-  ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) ) /\ r e. HAtoms ) -> ( r C_ ( p vH q ) -> ( -. ( r = p \/ r = q ) -> -. 0H = 0H ) ) ) | 
						
							| 49 | 48 | com23 |  |-  ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) ) /\ r e. HAtoms ) -> ( -. ( r = p \/ r = q ) -> ( r C_ ( p vH q ) -> -. 0H = 0H ) ) ) | 
						
							| 50 | 49 | impd |  |-  ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) ) /\ r e. HAtoms ) -> ( ( -. ( r = p \/ r = q ) /\ r C_ ( p vH q ) ) -> -. 0H = 0H ) ) | 
						
							| 51 | 44 50 | biimtrid |  |-  ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) ) /\ r e. HAtoms ) -> ( ( r =/= p /\ r =/= q /\ r C_ ( p vH q ) ) -> -. 0H = 0H ) ) | 
						
							| 52 | 51 | rexlimdva |  |-  ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) ) -> ( E. r e. HAtoms ( r =/= p /\ r =/= q /\ r C_ ( p vH q ) ) -> -. 0H = 0H ) ) | 
						
							| 53 | 40 52 | mpd |  |-  ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) ) -> -. 0H = 0H ) | 
						
							| 54 | 53 | an4s |  |-  ( ( ( p e. HAtoms /\ q e. HAtoms ) /\ ( p C_ A /\ q C_ ( _|_ ` A ) ) ) -> -. 0H = 0H ) | 
						
							| 55 | 54 | ex |  |-  ( ( p e. HAtoms /\ q e. HAtoms ) -> ( ( p C_ A /\ q C_ ( _|_ ` A ) ) -> -. 0H = 0H ) ) | 
						
							| 56 | 55 | rexlimivv |  |-  ( E. p e. HAtoms E. q e. HAtoms ( p C_ A /\ q C_ ( _|_ ` A ) ) -> -. 0H = 0H ) | 
						
							| 57 | 14 56 | syl |  |-  ( ( A =/= 0H /\ ( _|_ ` A ) =/= 0H ) -> -. 0H = 0H ) | 
						
							| 58 | 8 57 | sylbi |  |-  ( -. ( A = 0H \/ ( _|_ ` A ) = 0H ) -> -. 0H = 0H ) | 
						
							| 59 | 3 58 | mt4 |  |-  ( A = 0H \/ ( _|_ ` A ) = 0H ) | 
						
							| 60 |  | fveq2 |  |-  ( ( _|_ ` A ) = 0H -> ( _|_ ` ( _|_ ` A ) ) = ( _|_ ` 0H ) ) | 
						
							| 61 | 1 | ococi |  |-  ( _|_ ` ( _|_ ` A ) ) = A | 
						
							| 62 |  | choc0 |  |-  ( _|_ ` 0H ) = ~H | 
						
							| 63 | 60 61 62 | 3eqtr3g |  |-  ( ( _|_ ` A ) = 0H -> A = ~H ) | 
						
							| 64 | 63 | orim2i |  |-  ( ( A = 0H \/ ( _|_ ` A ) = 0H ) -> ( A = 0H \/ A = ~H ) ) | 
						
							| 65 | 59 64 | ax-mp |  |-  ( A = 0H \/ A = ~H ) |