| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chirred.1 |
|- A e. CH |
| 2 |
|
chirred.2 |
|- ( x e. CH -> A C_H x ) |
| 3 |
|
eqid |
|- 0H = 0H |
| 4 |
|
ioran |
|- ( -. ( A = 0H \/ ( _|_ ` A ) = 0H ) <-> ( -. A = 0H /\ -. ( _|_ ` A ) = 0H ) ) |
| 5 |
|
df-ne |
|- ( A =/= 0H <-> -. A = 0H ) |
| 6 |
|
df-ne |
|- ( ( _|_ ` A ) =/= 0H <-> -. ( _|_ ` A ) = 0H ) |
| 7 |
5 6
|
anbi12i |
|- ( ( A =/= 0H /\ ( _|_ ` A ) =/= 0H ) <-> ( -. A = 0H /\ -. ( _|_ ` A ) = 0H ) ) |
| 8 |
4 7
|
bitr4i |
|- ( -. ( A = 0H \/ ( _|_ ` A ) = 0H ) <-> ( A =/= 0H /\ ( _|_ ` A ) =/= 0H ) ) |
| 9 |
1
|
hatomici |
|- ( A =/= 0H -> E. p e. HAtoms p C_ A ) |
| 10 |
1
|
choccli |
|- ( _|_ ` A ) e. CH |
| 11 |
10
|
hatomici |
|- ( ( _|_ ` A ) =/= 0H -> E. q e. HAtoms q C_ ( _|_ ` A ) ) |
| 12 |
9 11
|
anim12i |
|- ( ( A =/= 0H /\ ( _|_ ` A ) =/= 0H ) -> ( E. p e. HAtoms p C_ A /\ E. q e. HAtoms q C_ ( _|_ ` A ) ) ) |
| 13 |
|
reeanv |
|- ( E. p e. HAtoms E. q e. HAtoms ( p C_ A /\ q C_ ( _|_ ` A ) ) <-> ( E. p e. HAtoms p C_ A /\ E. q e. HAtoms q C_ ( _|_ ` A ) ) ) |
| 14 |
12 13
|
sylibr |
|- ( ( A =/= 0H /\ ( _|_ ` A ) =/= 0H ) -> E. p e. HAtoms E. q e. HAtoms ( p C_ A /\ q C_ ( _|_ ` A ) ) ) |
| 15 |
|
simpll |
|- ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) ) -> p e. HAtoms ) |
| 16 |
|
simprl |
|- ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) ) -> q e. HAtoms ) |
| 17 |
|
atelch |
|- ( p e. HAtoms -> p e. CH ) |
| 18 |
|
chsscon3 |
|- ( ( p e. CH /\ A e. CH ) -> ( p C_ A <-> ( _|_ ` A ) C_ ( _|_ ` p ) ) ) |
| 19 |
17 1 18
|
sylancl |
|- ( p e. HAtoms -> ( p C_ A <-> ( _|_ ` A ) C_ ( _|_ ` p ) ) ) |
| 20 |
19
|
biimpa |
|- ( ( p e. HAtoms /\ p C_ A ) -> ( _|_ ` A ) C_ ( _|_ ` p ) ) |
| 21 |
|
sstr |
|- ( ( q C_ ( _|_ ` A ) /\ ( _|_ ` A ) C_ ( _|_ ` p ) ) -> q C_ ( _|_ ` p ) ) |
| 22 |
20 21
|
sylan2 |
|- ( ( q C_ ( _|_ ` A ) /\ ( p e. HAtoms /\ p C_ A ) ) -> q C_ ( _|_ ` p ) ) |
| 23 |
22
|
ancoms |
|- ( ( ( p e. HAtoms /\ p C_ A ) /\ q C_ ( _|_ ` A ) ) -> q C_ ( _|_ ` p ) ) |
| 24 |
|
atne0 |
|- ( p e. HAtoms -> p =/= 0H ) |
| 25 |
24
|
adantr |
|- ( ( p e. HAtoms /\ q C_ ( _|_ ` p ) ) -> p =/= 0H ) |
| 26 |
|
sseq1 |
|- ( p = q -> ( p C_ ( _|_ ` p ) <-> q C_ ( _|_ ` p ) ) ) |
| 27 |
26
|
bicomd |
|- ( p = q -> ( q C_ ( _|_ ` p ) <-> p C_ ( _|_ ` p ) ) ) |
| 28 |
|
chssoc |
|- ( p e. CH -> ( p C_ ( _|_ ` p ) <-> p = 0H ) ) |
| 29 |
17 28
|
syl |
|- ( p e. HAtoms -> ( p C_ ( _|_ ` p ) <-> p = 0H ) ) |
| 30 |
27 29
|
sylan9bbr |
|- ( ( p e. HAtoms /\ p = q ) -> ( q C_ ( _|_ ` p ) <-> p = 0H ) ) |
| 31 |
30
|
biimpa |
|- ( ( ( p e. HAtoms /\ p = q ) /\ q C_ ( _|_ ` p ) ) -> p = 0H ) |
| 32 |
31
|
an32s |
|- ( ( ( p e. HAtoms /\ q C_ ( _|_ ` p ) ) /\ p = q ) -> p = 0H ) |
| 33 |
32
|
ex |
|- ( ( p e. HAtoms /\ q C_ ( _|_ ` p ) ) -> ( p = q -> p = 0H ) ) |
| 34 |
33
|
necon3d |
|- ( ( p e. HAtoms /\ q C_ ( _|_ ` p ) ) -> ( p =/= 0H -> p =/= q ) ) |
| 35 |
25 34
|
mpd |
|- ( ( p e. HAtoms /\ q C_ ( _|_ ` p ) ) -> p =/= q ) |
| 36 |
35
|
adantlr |
|- ( ( ( p e. HAtoms /\ p C_ A ) /\ q C_ ( _|_ ` p ) ) -> p =/= q ) |
| 37 |
23 36
|
syldan |
|- ( ( ( p e. HAtoms /\ p C_ A ) /\ q C_ ( _|_ ` A ) ) -> p =/= q ) |
| 38 |
37
|
adantrl |
|- ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) ) -> p =/= q ) |
| 39 |
|
superpos |
|- ( ( p e. HAtoms /\ q e. HAtoms /\ p =/= q ) -> E. r e. HAtoms ( r =/= p /\ r =/= q /\ r C_ ( p vH q ) ) ) |
| 40 |
15 16 38 39
|
syl3anc |
|- ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) ) -> E. r e. HAtoms ( r =/= p /\ r =/= q /\ r C_ ( p vH q ) ) ) |
| 41 |
|
df-3an |
|- ( ( r =/= p /\ r =/= q /\ r C_ ( p vH q ) ) <-> ( ( r =/= p /\ r =/= q ) /\ r C_ ( p vH q ) ) ) |
| 42 |
|
neanior |
|- ( ( r =/= p /\ r =/= q ) <-> -. ( r = p \/ r = q ) ) |
| 43 |
42
|
anbi1i |
|- ( ( ( r =/= p /\ r =/= q ) /\ r C_ ( p vH q ) ) <-> ( -. ( r = p \/ r = q ) /\ r C_ ( p vH q ) ) ) |
| 44 |
41 43
|
bitri |
|- ( ( r =/= p /\ r =/= q /\ r C_ ( p vH q ) ) <-> ( -. ( r = p \/ r = q ) /\ r C_ ( p vH q ) ) ) |
| 45 |
1 2
|
chirredlem4 |
|- ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) ) /\ ( r e. HAtoms /\ r C_ ( p vH q ) ) ) -> ( r = p \/ r = q ) ) |
| 46 |
45
|
anassrs |
|- ( ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) ) /\ r e. HAtoms ) /\ r C_ ( p vH q ) ) -> ( r = p \/ r = q ) ) |
| 47 |
46
|
pm2.24d |
|- ( ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) ) /\ r e. HAtoms ) /\ r C_ ( p vH q ) ) -> ( -. ( r = p \/ r = q ) -> -. 0H = 0H ) ) |
| 48 |
47
|
ex |
|- ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) ) /\ r e. HAtoms ) -> ( r C_ ( p vH q ) -> ( -. ( r = p \/ r = q ) -> -. 0H = 0H ) ) ) |
| 49 |
48
|
com23 |
|- ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) ) /\ r e. HAtoms ) -> ( -. ( r = p \/ r = q ) -> ( r C_ ( p vH q ) -> -. 0H = 0H ) ) ) |
| 50 |
49
|
impd |
|- ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) ) /\ r e. HAtoms ) -> ( ( -. ( r = p \/ r = q ) /\ r C_ ( p vH q ) ) -> -. 0H = 0H ) ) |
| 51 |
44 50
|
biimtrid |
|- ( ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) ) /\ r e. HAtoms ) -> ( ( r =/= p /\ r =/= q /\ r C_ ( p vH q ) ) -> -. 0H = 0H ) ) |
| 52 |
51
|
rexlimdva |
|- ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) ) -> ( E. r e. HAtoms ( r =/= p /\ r =/= q /\ r C_ ( p vH q ) ) -> -. 0H = 0H ) ) |
| 53 |
40 52
|
mpd |
|- ( ( ( p e. HAtoms /\ p C_ A ) /\ ( q e. HAtoms /\ q C_ ( _|_ ` A ) ) ) -> -. 0H = 0H ) |
| 54 |
53
|
an4s |
|- ( ( ( p e. HAtoms /\ q e. HAtoms ) /\ ( p C_ A /\ q C_ ( _|_ ` A ) ) ) -> -. 0H = 0H ) |
| 55 |
54
|
ex |
|- ( ( p e. HAtoms /\ q e. HAtoms ) -> ( ( p C_ A /\ q C_ ( _|_ ` A ) ) -> -. 0H = 0H ) ) |
| 56 |
55
|
rexlimivv |
|- ( E. p e. HAtoms E. q e. HAtoms ( p C_ A /\ q C_ ( _|_ ` A ) ) -> -. 0H = 0H ) |
| 57 |
14 56
|
syl |
|- ( ( A =/= 0H /\ ( _|_ ` A ) =/= 0H ) -> -. 0H = 0H ) |
| 58 |
8 57
|
sylbi |
|- ( -. ( A = 0H \/ ( _|_ ` A ) = 0H ) -> -. 0H = 0H ) |
| 59 |
3 58
|
mt4 |
|- ( A = 0H \/ ( _|_ ` A ) = 0H ) |
| 60 |
|
fveq2 |
|- ( ( _|_ ` A ) = 0H -> ( _|_ ` ( _|_ ` A ) ) = ( _|_ ` 0H ) ) |
| 61 |
1
|
ococi |
|- ( _|_ ` ( _|_ ` A ) ) = A |
| 62 |
|
choc0 |
|- ( _|_ ` 0H ) = ~H |
| 63 |
60 61 62
|
3eqtr3g |
|- ( ( _|_ ` A ) = 0H -> A = ~H ) |
| 64 |
63
|
orim2i |
|- ( ( A = 0H \/ ( _|_ ` A ) = 0H ) -> ( A = 0H \/ A = ~H ) ) |
| 65 |
59 64
|
ax-mp |
|- ( A = 0H \/ A = ~H ) |