| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chpdmat.c | ⊢ 𝐶  =  ( 𝑁  CharPlyMat  𝑅 ) | 
						
							| 2 |  | chpdmat.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 3 |  | chpdmat.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 4 |  | chpdmat.s | ⊢ 𝑆  =  ( algSc ‘ 𝑃 ) | 
						
							| 5 |  | chpdmat.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 6 |  | chpdmat.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 7 |  | chpdmat.0 | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 8 |  | chpdmat.g | ⊢ 𝐺  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 9 |  | chpdmat.m | ⊢  −   =  ( -g ‘ 𝑃 ) | 
						
							| 10 |  | chpdmatlem.q | ⊢ 𝑄  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 11 |  | chpdmatlem.1 | ⊢  1   =  ( 1r ‘ 𝑄 ) | 
						
							| 12 |  | chpdmatlem.m | ⊢  ·   =  (  ·𝑠  ‘ 𝑄 ) | 
						
							| 13 | 2 10 | pmatlmod | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑄  ∈  LMod ) | 
						
							| 14 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 15 | 6 2 14 | vr1cl | ⊢ ( 𝑅  ∈  Ring  →  𝑋  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑋  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 17 | 2 | ply1ring | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring ) | 
						
							| 18 | 10 | matsca2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑃  ∈  Ring )  →  𝑃  =  ( Scalar ‘ 𝑄 ) ) | 
						
							| 19 | 17 18 | sylan2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑃  =  ( Scalar ‘ 𝑄 ) ) | 
						
							| 20 | 19 | eqcomd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( Scalar ‘ 𝑄 )  =  𝑃 ) | 
						
							| 21 | 20 | fveq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( Base ‘ ( Scalar ‘ 𝑄 ) )  =  ( Base ‘ 𝑃 ) ) | 
						
							| 22 | 16 21 | eleqtrrd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑋  ∈  ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) | 
						
							| 23 | 2 10 | pmatring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑄  ∈  Ring ) | 
						
							| 24 |  | eqid | ⊢ ( Base ‘ 𝑄 )  =  ( Base ‘ 𝑄 ) | 
						
							| 25 | 24 11 | ringidcl | ⊢ ( 𝑄  ∈  Ring  →   1   ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 26 | 23 25 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →   1   ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 27 |  | eqid | ⊢ ( Scalar ‘ 𝑄 )  =  ( Scalar ‘ 𝑄 ) | 
						
							| 28 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑄 ) )  =  ( Base ‘ ( Scalar ‘ 𝑄 ) ) | 
						
							| 29 | 24 27 12 28 | lmodvscl | ⊢ ( ( 𝑄  ∈  LMod  ∧  𝑋  ∈  ( Base ‘ ( Scalar ‘ 𝑄 ) )  ∧   1   ∈  ( Base ‘ 𝑄 ) )  →  ( 𝑋  ·   1  )  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 30 | 13 22 26 29 | syl3anc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑋  ·   1  )  ∈  ( Base ‘ 𝑄 ) ) |