| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chpdmat.c |  |-  C = ( N CharPlyMat R ) | 
						
							| 2 |  | chpdmat.p |  |-  P = ( Poly1 ` R ) | 
						
							| 3 |  | chpdmat.a |  |-  A = ( N Mat R ) | 
						
							| 4 |  | chpdmat.s |  |-  S = ( algSc ` P ) | 
						
							| 5 |  | chpdmat.b |  |-  B = ( Base ` A ) | 
						
							| 6 |  | chpdmat.x |  |-  X = ( var1 ` R ) | 
						
							| 7 |  | chpdmat.0 |  |-  .0. = ( 0g ` R ) | 
						
							| 8 |  | chpdmat.g |  |-  G = ( mulGrp ` P ) | 
						
							| 9 |  | chpdmat.m |  |-  .- = ( -g ` P ) | 
						
							| 10 |  | chpdmatlem.q |  |-  Q = ( N Mat P ) | 
						
							| 11 |  | chpdmatlem.1 |  |-  .1. = ( 1r ` Q ) | 
						
							| 12 |  | chpdmatlem.m |  |-  .x. = ( .s ` Q ) | 
						
							| 13 | 2 10 | pmatlmod |  |-  ( ( N e. Fin /\ R e. Ring ) -> Q e. LMod ) | 
						
							| 14 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 15 | 6 2 14 | vr1cl |  |-  ( R e. Ring -> X e. ( Base ` P ) ) | 
						
							| 16 | 15 | adantl |  |-  ( ( N e. Fin /\ R e. Ring ) -> X e. ( Base ` P ) ) | 
						
							| 17 | 2 | ply1ring |  |-  ( R e. Ring -> P e. Ring ) | 
						
							| 18 | 10 | matsca2 |  |-  ( ( N e. Fin /\ P e. Ring ) -> P = ( Scalar ` Q ) ) | 
						
							| 19 | 17 18 | sylan2 |  |-  ( ( N e. Fin /\ R e. Ring ) -> P = ( Scalar ` Q ) ) | 
						
							| 20 | 19 | eqcomd |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( Scalar ` Q ) = P ) | 
						
							| 21 | 20 | fveq2d |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( Base ` ( Scalar ` Q ) ) = ( Base ` P ) ) | 
						
							| 22 | 16 21 | eleqtrrd |  |-  ( ( N e. Fin /\ R e. Ring ) -> X e. ( Base ` ( Scalar ` Q ) ) ) | 
						
							| 23 | 2 10 | pmatring |  |-  ( ( N e. Fin /\ R e. Ring ) -> Q e. Ring ) | 
						
							| 24 |  | eqid |  |-  ( Base ` Q ) = ( Base ` Q ) | 
						
							| 25 | 24 11 | ringidcl |  |-  ( Q e. Ring -> .1. e. ( Base ` Q ) ) | 
						
							| 26 | 23 25 | syl |  |-  ( ( N e. Fin /\ R e. Ring ) -> .1. e. ( Base ` Q ) ) | 
						
							| 27 |  | eqid |  |-  ( Scalar ` Q ) = ( Scalar ` Q ) | 
						
							| 28 |  | eqid |  |-  ( Base ` ( Scalar ` Q ) ) = ( Base ` ( Scalar ` Q ) ) | 
						
							| 29 | 24 27 12 28 | lmodvscl |  |-  ( ( Q e. LMod /\ X e. ( Base ` ( Scalar ` Q ) ) /\ .1. e. ( Base ` Q ) ) -> ( X .x. .1. ) e. ( Base ` Q ) ) | 
						
							| 30 | 13 22 26 29 | syl3anc |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( X .x. .1. ) e. ( Base ` Q ) ) |