Metamath Proof Explorer


Theorem chpdmatlem0

Description: Lemma 0 for chpdmat . (Contributed by AV, 18-Aug-2019)

Ref Expression
Hypotheses chpdmat.c
|- C = ( N CharPlyMat R )
chpdmat.p
|- P = ( Poly1 ` R )
chpdmat.a
|- A = ( N Mat R )
chpdmat.s
|- S = ( algSc ` P )
chpdmat.b
|- B = ( Base ` A )
chpdmat.x
|- X = ( var1 ` R )
chpdmat.0
|- .0. = ( 0g ` R )
chpdmat.g
|- G = ( mulGrp ` P )
chpdmat.m
|- .- = ( -g ` P )
chpdmatlem.q
|- Q = ( N Mat P )
chpdmatlem.1
|- .1. = ( 1r ` Q )
chpdmatlem.m
|- .x. = ( .s ` Q )
Assertion chpdmatlem0
|- ( ( N e. Fin /\ R e. Ring ) -> ( X .x. .1. ) e. ( Base ` Q ) )

Proof

Step Hyp Ref Expression
1 chpdmat.c
 |-  C = ( N CharPlyMat R )
2 chpdmat.p
 |-  P = ( Poly1 ` R )
3 chpdmat.a
 |-  A = ( N Mat R )
4 chpdmat.s
 |-  S = ( algSc ` P )
5 chpdmat.b
 |-  B = ( Base ` A )
6 chpdmat.x
 |-  X = ( var1 ` R )
7 chpdmat.0
 |-  .0. = ( 0g ` R )
8 chpdmat.g
 |-  G = ( mulGrp ` P )
9 chpdmat.m
 |-  .- = ( -g ` P )
10 chpdmatlem.q
 |-  Q = ( N Mat P )
11 chpdmatlem.1
 |-  .1. = ( 1r ` Q )
12 chpdmatlem.m
 |-  .x. = ( .s ` Q )
13 2 10 pmatlmod
 |-  ( ( N e. Fin /\ R e. Ring ) -> Q e. LMod )
14 eqid
 |-  ( Base ` P ) = ( Base ` P )
15 6 2 14 vr1cl
 |-  ( R e. Ring -> X e. ( Base ` P ) )
16 15 adantl
 |-  ( ( N e. Fin /\ R e. Ring ) -> X e. ( Base ` P ) )
17 2 ply1ring
 |-  ( R e. Ring -> P e. Ring )
18 10 matsca2
 |-  ( ( N e. Fin /\ P e. Ring ) -> P = ( Scalar ` Q ) )
19 17 18 sylan2
 |-  ( ( N e. Fin /\ R e. Ring ) -> P = ( Scalar ` Q ) )
20 19 eqcomd
 |-  ( ( N e. Fin /\ R e. Ring ) -> ( Scalar ` Q ) = P )
21 20 fveq2d
 |-  ( ( N e. Fin /\ R e. Ring ) -> ( Base ` ( Scalar ` Q ) ) = ( Base ` P ) )
22 16 21 eleqtrrd
 |-  ( ( N e. Fin /\ R e. Ring ) -> X e. ( Base ` ( Scalar ` Q ) ) )
23 2 10 pmatring
 |-  ( ( N e. Fin /\ R e. Ring ) -> Q e. Ring )
24 eqid
 |-  ( Base ` Q ) = ( Base ` Q )
25 24 11 ringidcl
 |-  ( Q e. Ring -> .1. e. ( Base ` Q ) )
26 23 25 syl
 |-  ( ( N e. Fin /\ R e. Ring ) -> .1. e. ( Base ` Q ) )
27 eqid
 |-  ( Scalar ` Q ) = ( Scalar ` Q )
28 eqid
 |-  ( Base ` ( Scalar ` Q ) ) = ( Base ` ( Scalar ` Q ) )
29 24 27 12 28 lmodvscl
 |-  ( ( Q e. LMod /\ X e. ( Base ` ( Scalar ` Q ) ) /\ .1. e. ( Base ` Q ) ) -> ( X .x. .1. ) e. ( Base ` Q ) )
30 13 22 26 29 syl3anc
 |-  ( ( N e. Fin /\ R e. Ring ) -> ( X .x. .1. ) e. ( Base ` Q ) )