Step |
Hyp |
Ref |
Expression |
1 |
|
chpdmat.c |
|- C = ( N CharPlyMat R ) |
2 |
|
chpdmat.p |
|- P = ( Poly1 ` R ) |
3 |
|
chpdmat.a |
|- A = ( N Mat R ) |
4 |
|
chpdmat.s |
|- S = ( algSc ` P ) |
5 |
|
chpdmat.b |
|- B = ( Base ` A ) |
6 |
|
chpdmat.x |
|- X = ( var1 ` R ) |
7 |
|
chpdmat.0 |
|- .0. = ( 0g ` R ) |
8 |
|
chpdmat.g |
|- G = ( mulGrp ` P ) |
9 |
|
chpdmat.m |
|- .- = ( -g ` P ) |
10 |
|
chpdmatlem.q |
|- Q = ( N Mat P ) |
11 |
|
chpdmatlem.1 |
|- .1. = ( 1r ` Q ) |
12 |
|
chpdmatlem.m |
|- .x. = ( .s ` Q ) |
13 |
2 10
|
pmatlmod |
|- ( ( N e. Fin /\ R e. Ring ) -> Q e. LMod ) |
14 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
15 |
6 2 14
|
vr1cl |
|- ( R e. Ring -> X e. ( Base ` P ) ) |
16 |
15
|
adantl |
|- ( ( N e. Fin /\ R e. Ring ) -> X e. ( Base ` P ) ) |
17 |
2
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
18 |
10
|
matsca2 |
|- ( ( N e. Fin /\ P e. Ring ) -> P = ( Scalar ` Q ) ) |
19 |
17 18
|
sylan2 |
|- ( ( N e. Fin /\ R e. Ring ) -> P = ( Scalar ` Q ) ) |
20 |
19
|
eqcomd |
|- ( ( N e. Fin /\ R e. Ring ) -> ( Scalar ` Q ) = P ) |
21 |
20
|
fveq2d |
|- ( ( N e. Fin /\ R e. Ring ) -> ( Base ` ( Scalar ` Q ) ) = ( Base ` P ) ) |
22 |
16 21
|
eleqtrrd |
|- ( ( N e. Fin /\ R e. Ring ) -> X e. ( Base ` ( Scalar ` Q ) ) ) |
23 |
2 10
|
pmatring |
|- ( ( N e. Fin /\ R e. Ring ) -> Q e. Ring ) |
24 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
25 |
24 11
|
ringidcl |
|- ( Q e. Ring -> .1. e. ( Base ` Q ) ) |
26 |
23 25
|
syl |
|- ( ( N e. Fin /\ R e. Ring ) -> .1. e. ( Base ` Q ) ) |
27 |
|
eqid |
|- ( Scalar ` Q ) = ( Scalar ` Q ) |
28 |
|
eqid |
|- ( Base ` ( Scalar ` Q ) ) = ( Base ` ( Scalar ` Q ) ) |
29 |
24 27 12 28
|
lmodvscl |
|- ( ( Q e. LMod /\ X e. ( Base ` ( Scalar ` Q ) ) /\ .1. e. ( Base ` Q ) ) -> ( X .x. .1. ) e. ( Base ` Q ) ) |
30 |
13 22 26 29
|
syl3anc |
|- ( ( N e. Fin /\ R e. Ring ) -> ( X .x. .1. ) e. ( Base ` Q ) ) |