| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chpdmat.c |  |-  C = ( N CharPlyMat R ) | 
						
							| 2 |  | chpdmat.p |  |-  P = ( Poly1 ` R ) | 
						
							| 3 |  | chpdmat.a |  |-  A = ( N Mat R ) | 
						
							| 4 |  | chpdmat.s |  |-  S = ( algSc ` P ) | 
						
							| 5 |  | chpdmat.b |  |-  B = ( Base ` A ) | 
						
							| 6 |  | chpdmat.x |  |-  X = ( var1 ` R ) | 
						
							| 7 |  | chpdmat.0 |  |-  .0. = ( 0g ` R ) | 
						
							| 8 |  | chpdmat.g |  |-  G = ( mulGrp ` P ) | 
						
							| 9 |  | chpdmat.m |  |-  .- = ( -g ` P ) | 
						
							| 10 |  | eqid |  |-  ( N Mat P ) = ( N Mat P ) | 
						
							| 11 |  | eqid |  |-  ( N maDet P ) = ( N maDet P ) | 
						
							| 12 |  | eqid |  |-  ( -g ` ( N Mat P ) ) = ( -g ` ( N Mat P ) ) | 
						
							| 13 |  | eqid |  |-  ( .s ` ( N Mat P ) ) = ( .s ` ( N Mat P ) ) | 
						
							| 14 |  | eqid |  |-  ( N matToPolyMat R ) = ( N matToPolyMat R ) | 
						
							| 15 |  | eqid |  |-  ( 1r ` ( N Mat P ) ) = ( 1r ` ( N Mat P ) ) | 
						
							| 16 | 1 3 5 2 10 11 12 6 13 14 15 | chpmatval |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( C ` M ) = ( ( N maDet P ) ` ( ( X ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) ) ) | 
						
							| 17 | 16 | adantr |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) -> ( C ` M ) = ( ( N maDet P ) ` ( ( X ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) ) ) | 
						
							| 18 | 2 | ply1crng |  |-  ( R e. CRing -> P e. CRing ) | 
						
							| 19 | 18 | 3ad2ant2 |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> P e. CRing ) | 
						
							| 20 |  | simp1 |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> N e. Fin ) | 
						
							| 21 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 22 | 21 | 3anim2i |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( N e. Fin /\ R e. Ring /\ M e. B ) ) | 
						
							| 23 | 1 2 3 4 5 6 7 8 9 10 15 13 12 14 | chpdmatlem1 |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( ( X ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) e. ( Base ` ( N Mat P ) ) ) | 
						
							| 24 | 22 23 | syl |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( ( X ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) e. ( Base ` ( N Mat P ) ) ) | 
						
							| 25 | 19 20 24 | 3jca |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( P e. CRing /\ N e. Fin /\ ( ( X ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) e. ( Base ` ( N Mat P ) ) ) ) | 
						
							| 26 | 25 | adantr |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) -> ( P e. CRing /\ N e. Fin /\ ( ( X ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) e. ( Base ` ( N Mat P ) ) ) ) | 
						
							| 27 | 22 | anim1i |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ i e. N ) -> ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) ) | 
						
							| 28 | 27 | anim1i |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ i e. N ) /\ j e. N ) -> ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) ) | 
						
							| 29 | 1 2 3 4 5 6 7 8 9 10 15 13 12 14 | chpdmatlem2 |  |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( i ( ( X ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) j ) = ( 0g ` P ) ) | 
						
							| 30 | 28 29 | sylanl1 |  |-  ( ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( i ( ( X ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) j ) = ( 0g ` P ) ) | 
						
							| 31 | 30 | exp31 |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ i e. N ) /\ j e. N ) -> ( i =/= j -> ( ( i M j ) = .0. -> ( i ( ( X ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) j ) = ( 0g ` P ) ) ) ) | 
						
							| 32 | 31 | a2d |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ i e. N ) /\ j e. N ) -> ( ( i =/= j -> ( i M j ) = .0. ) -> ( i =/= j -> ( i ( ( X ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) j ) = ( 0g ` P ) ) ) ) | 
						
							| 33 | 32 | ralimdva |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ i e. N ) -> ( A. j e. N ( i =/= j -> ( i M j ) = .0. ) -> A. j e. N ( i =/= j -> ( i ( ( X ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) j ) = ( 0g ` P ) ) ) ) | 
						
							| 34 | 33 | ralimdva |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) -> A. i e. N A. j e. N ( i =/= j -> ( i ( ( X ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) j ) = ( 0g ` P ) ) ) ) | 
						
							| 35 | 34 | imp |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) -> A. i e. N A. j e. N ( i =/= j -> ( i ( ( X ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) j ) = ( 0g ` P ) ) ) | 
						
							| 36 |  | eqid |  |-  ( Base ` ( N Mat P ) ) = ( Base ` ( N Mat P ) ) | 
						
							| 37 |  | eqid |  |-  ( 0g ` P ) = ( 0g ` P ) | 
						
							| 38 | 11 10 36 8 37 | mdetdiag |  |-  ( ( P e. CRing /\ N e. Fin /\ ( ( X ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) e. ( Base ` ( N Mat P ) ) ) -> ( A. i e. N A. j e. N ( i =/= j -> ( i ( ( X ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) j ) = ( 0g ` P ) ) -> ( ( N maDet P ) ` ( ( X ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) ) = ( G gsum ( k e. N |-> ( k ( ( X ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) k ) ) ) ) ) | 
						
							| 39 | 26 35 38 | sylc |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) -> ( ( N maDet P ) ` ( ( X ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) ) = ( G gsum ( k e. N |-> ( k ( ( X ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) k ) ) ) ) | 
						
							| 40 | 1 2 3 4 5 6 7 8 9 10 15 13 12 14 | chpdmatlem3 |  |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ k e. N ) -> ( k ( ( X ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) k ) = ( X .- ( S ` ( k M k ) ) ) ) | 
						
							| 41 | 22 40 | sylan |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ k e. N ) -> ( k ( ( X ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) k ) = ( X .- ( S ` ( k M k ) ) ) ) | 
						
							| 42 | 41 | adantlr |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) /\ k e. N ) -> ( k ( ( X ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) k ) = ( X .- ( S ` ( k M k ) ) ) ) | 
						
							| 43 | 42 | mpteq2dva |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) -> ( k e. N |-> ( k ( ( X ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) k ) ) = ( k e. N |-> ( X .- ( S ` ( k M k ) ) ) ) ) | 
						
							| 44 | 43 | oveq2d |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) -> ( G gsum ( k e. N |-> ( k ( ( X ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) k ) ) ) = ( G gsum ( k e. N |-> ( X .- ( S ` ( k M k ) ) ) ) ) ) | 
						
							| 45 | 17 39 44 | 3eqtrd |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) -> ( C ` M ) = ( G gsum ( k e. N |-> ( X .- ( S ` ( k M k ) ) ) ) ) ) |