| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chpdmat.c |  |-  C = ( N CharPlyMat R ) | 
						
							| 2 |  | chpdmat.p |  |-  P = ( Poly1 ` R ) | 
						
							| 3 |  | chpdmat.a |  |-  A = ( N Mat R ) | 
						
							| 4 |  | chpdmat.s |  |-  S = ( algSc ` P ) | 
						
							| 5 |  | chpdmat.b |  |-  B = ( Base ` A ) | 
						
							| 6 |  | chpdmat.x |  |-  X = ( var1 ` R ) | 
						
							| 7 |  | chpdmat.0 |  |-  .0. = ( 0g ` R ) | 
						
							| 8 |  | chpdmat.g |  |-  G = ( mulGrp ` P ) | 
						
							| 9 |  | chpdmat.m |  |-  .- = ( -g ` P ) | 
						
							| 10 |  | chpdmatlem.q |  |-  Q = ( N Mat P ) | 
						
							| 11 |  | chpdmatlem.1 |  |-  .1. = ( 1r ` Q ) | 
						
							| 12 |  | chpdmatlem.m |  |-  .x. = ( .s ` Q ) | 
						
							| 13 |  | chpdmatlem.z |  |-  Z = ( -g ` Q ) | 
						
							| 14 |  | chpdmatlem.t |  |-  T = ( N matToPolyMat R ) | 
						
							| 15 | 2 | ply1ring |  |-  ( R e. Ring -> P e. Ring ) | 
						
							| 16 | 15 | 3ad2ant2 |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> P e. Ring ) | 
						
							| 17 | 16 | ad4antr |  |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> P e. Ring ) | 
						
							| 18 | 1 2 3 4 5 6 7 8 9 10 11 12 | chpdmatlem0 |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( X .x. .1. ) e. ( Base ` Q ) ) | 
						
							| 19 | 18 | 3adant3 |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( X .x. .1. ) e. ( Base ` Q ) ) | 
						
							| 20 | 19 | ad4antr |  |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( X .x. .1. ) e. ( Base ` Q ) ) | 
						
							| 21 | 14 3 5 2 10 | mat2pmatbas |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( T ` M ) e. ( Base ` Q ) ) | 
						
							| 22 | 21 | ad4antr |  |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( T ` M ) e. ( Base ` Q ) ) | 
						
							| 23 |  | simpr |  |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) -> i e. N ) | 
						
							| 24 | 23 | anim1i |  |-  ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) -> ( i e. N /\ j e. N ) ) | 
						
							| 25 | 24 | ad2antrr |  |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( i e. N /\ j e. N ) ) | 
						
							| 26 |  | eqid |  |-  ( Base ` Q ) = ( Base ` Q ) | 
						
							| 27 | 10 26 13 9 | matsubgcell |  |-  ( ( P e. Ring /\ ( ( X .x. .1. ) e. ( Base ` Q ) /\ ( T ` M ) e. ( Base ` Q ) ) /\ ( i e. N /\ j e. N ) ) -> ( i ( ( X .x. .1. ) Z ( T ` M ) ) j ) = ( ( i ( X .x. .1. ) j ) .- ( i ( T ` M ) j ) ) ) | 
						
							| 28 | 17 20 22 25 27 | syl121anc |  |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( i ( ( X .x. .1. ) Z ( T ` M ) ) j ) = ( ( i ( X .x. .1. ) j ) .- ( i ( T ` M ) j ) ) ) | 
						
							| 29 | 16 | ad2antrr |  |-  ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) -> P e. Ring ) | 
						
							| 30 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 31 | 6 2 30 | vr1cl |  |-  ( R e. Ring -> X e. ( Base ` P ) ) | 
						
							| 32 | 31 | 3ad2ant2 |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> X e. ( Base ` P ) ) | 
						
							| 33 | 2 10 | pmatring |  |-  ( ( N e. Fin /\ R e. Ring ) -> Q e. Ring ) | 
						
							| 34 | 33 | 3adant3 |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> Q e. Ring ) | 
						
							| 35 | 26 11 | ringidcl |  |-  ( Q e. Ring -> .1. e. ( Base ` Q ) ) | 
						
							| 36 | 34 35 | syl |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> .1. e. ( Base ` Q ) ) | 
						
							| 37 | 32 36 | jca |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( X e. ( Base ` P ) /\ .1. e. ( Base ` Q ) ) ) | 
						
							| 38 | 37 | ad2antrr |  |-  ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) -> ( X e. ( Base ` P ) /\ .1. e. ( Base ` Q ) ) ) | 
						
							| 39 | 29 38 24 | 3jca |  |-  ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) -> ( P e. Ring /\ ( X e. ( Base ` P ) /\ .1. e. ( Base ` Q ) ) /\ ( i e. N /\ j e. N ) ) ) | 
						
							| 40 | 39 | ad2antrr |  |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( P e. Ring /\ ( X e. ( Base ` P ) /\ .1. e. ( Base ` Q ) ) /\ ( i e. N /\ j e. N ) ) ) | 
						
							| 41 |  | eqid |  |-  ( .r ` P ) = ( .r ` P ) | 
						
							| 42 | 10 26 30 12 41 | matvscacell |  |-  ( ( P e. Ring /\ ( X e. ( Base ` P ) /\ .1. e. ( Base ` Q ) ) /\ ( i e. N /\ j e. N ) ) -> ( i ( X .x. .1. ) j ) = ( X ( .r ` P ) ( i .1. j ) ) ) | 
						
							| 43 | 40 42 | syl |  |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( i ( X .x. .1. ) j ) = ( X ( .r ` P ) ( i .1. j ) ) ) | 
						
							| 44 | 43 | oveq1d |  |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( ( i ( X .x. .1. ) j ) .- ( i ( T ` M ) j ) ) = ( ( X ( .r ` P ) ( i .1. j ) ) .- ( i ( T ` M ) j ) ) ) | 
						
							| 45 |  | eqid |  |-  ( 1r ` P ) = ( 1r ` P ) | 
						
							| 46 |  | eqid |  |-  ( 0g ` P ) = ( 0g ` P ) | 
						
							| 47 |  | simpll1 |  |-  ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) -> N e. Fin ) | 
						
							| 48 | 23 | adantr |  |-  ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) -> i e. N ) | 
						
							| 49 |  | simpr |  |-  ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) -> j e. N ) | 
						
							| 50 | 10 45 46 47 29 48 49 11 | mat1ov |  |-  ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) -> ( i .1. j ) = if ( i = j , ( 1r ` P ) , ( 0g ` P ) ) ) | 
						
							| 51 |  | ifnefalse |  |-  ( i =/= j -> if ( i = j , ( 1r ` P ) , ( 0g ` P ) ) = ( 0g ` P ) ) | 
						
							| 52 | 50 51 | sylan9eq |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) -> ( i .1. j ) = ( 0g ` P ) ) | 
						
							| 53 | 52 | oveq2d |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) -> ( X ( .r ` P ) ( i .1. j ) ) = ( X ( .r ` P ) ( 0g ` P ) ) ) | 
						
							| 54 | 15 31 | jca |  |-  ( R e. Ring -> ( P e. Ring /\ X e. ( Base ` P ) ) ) | 
						
							| 55 | 54 | 3ad2ant2 |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( P e. Ring /\ X e. ( Base ` P ) ) ) | 
						
							| 56 | 30 41 46 | ringrz |  |-  ( ( P e. Ring /\ X e. ( Base ` P ) ) -> ( X ( .r ` P ) ( 0g ` P ) ) = ( 0g ` P ) ) | 
						
							| 57 | 55 56 | syl |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( X ( .r ` P ) ( 0g ` P ) ) = ( 0g ` P ) ) | 
						
							| 58 | 57 | adantr |  |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) -> ( X ( .r ` P ) ( 0g ` P ) ) = ( 0g ` P ) ) | 
						
							| 59 | 58 | ad2antrr |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) -> ( X ( .r ` P ) ( 0g ` P ) ) = ( 0g ` P ) ) | 
						
							| 60 | 53 59 | eqtrd |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) -> ( X ( .r ` P ) ( i .1. j ) ) = ( 0g ` P ) ) | 
						
							| 61 | 60 | adantr |  |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( X ( .r ` P ) ( i .1. j ) ) = ( 0g ` P ) ) | 
						
							| 62 |  | simpll |  |-  ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) -> ( N e. Fin /\ R e. Ring /\ M e. B ) ) | 
						
							| 63 | 62 24 | jca |  |-  ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) -> ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ ( i e. N /\ j e. N ) ) ) | 
						
							| 64 | 63 | ad2antrr |  |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ ( i e. N /\ j e. N ) ) ) | 
						
							| 65 | 14 3 5 2 4 | mat2pmatvalel |  |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ ( i e. N /\ j e. N ) ) -> ( i ( T ` M ) j ) = ( S ` ( i M j ) ) ) | 
						
							| 66 | 64 65 | syl |  |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( i ( T ` M ) j ) = ( S ` ( i M j ) ) ) | 
						
							| 67 | 61 66 | oveq12d |  |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( ( X ( .r ` P ) ( i .1. j ) ) .- ( i ( T ` M ) j ) ) = ( ( 0g ` P ) .- ( S ` ( i M j ) ) ) ) | 
						
							| 68 |  | fveq2 |  |-  ( ( i M j ) = .0. -> ( S ` ( i M j ) ) = ( S ` .0. ) ) | 
						
							| 69 | 68 | adantl |  |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( S ` ( i M j ) ) = ( S ` .0. ) ) | 
						
							| 70 | 2 4 7 46 | ply1scl0 |  |-  ( R e. Ring -> ( S ` .0. ) = ( 0g ` P ) ) | 
						
							| 71 | 70 | 3ad2ant2 |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( S ` .0. ) = ( 0g ` P ) ) | 
						
							| 72 | 71 | ad4antr |  |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( S ` .0. ) = ( 0g ` P ) ) | 
						
							| 73 | 69 72 | eqtrd |  |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( S ` ( i M j ) ) = ( 0g ` P ) ) | 
						
							| 74 | 73 | oveq2d |  |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( ( 0g ` P ) .- ( S ` ( i M j ) ) ) = ( ( 0g ` P ) .- ( 0g ` P ) ) ) | 
						
							| 75 |  | ringgrp |  |-  ( P e. Ring -> P e. Grp ) | 
						
							| 76 | 15 75 | syl |  |-  ( R e. Ring -> P e. Grp ) | 
						
							| 77 | 30 46 | grpidcl |  |-  ( P e. Grp -> ( 0g ` P ) e. ( Base ` P ) ) | 
						
							| 78 | 76 77 | jccir |  |-  ( R e. Ring -> ( P e. Grp /\ ( 0g ` P ) e. ( Base ` P ) ) ) | 
						
							| 79 | 78 | 3ad2ant2 |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( P e. Grp /\ ( 0g ` P ) e. ( Base ` P ) ) ) | 
						
							| 80 | 30 46 9 | grpsubid |  |-  ( ( P e. Grp /\ ( 0g ` P ) e. ( Base ` P ) ) -> ( ( 0g ` P ) .- ( 0g ` P ) ) = ( 0g ` P ) ) | 
						
							| 81 | 79 80 | syl |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( ( 0g ` P ) .- ( 0g ` P ) ) = ( 0g ` P ) ) | 
						
							| 82 | 81 | ad4antr |  |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( ( 0g ` P ) .- ( 0g ` P ) ) = ( 0g ` P ) ) | 
						
							| 83 | 67 74 82 | 3eqtrd |  |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( ( X ( .r ` P ) ( i .1. j ) ) .- ( i ( T ` M ) j ) ) = ( 0g ` P ) ) | 
						
							| 84 | 28 44 83 | 3eqtrd |  |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( i ( ( X .x. .1. ) Z ( T ` M ) ) j ) = ( 0g ` P ) ) |