| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chpdmat.c |  | 
						
							| 2 |  | chpdmat.p |  | 
						
							| 3 |  | chpdmat.a |  | 
						
							| 4 |  | chpdmat.s |  | 
						
							| 5 |  | chpdmat.b |  | 
						
							| 6 |  | chpdmat.x |  | 
						
							| 7 |  | chpdmat.0 |  | 
						
							| 8 |  | chpdmat.g |  | 
						
							| 9 |  | chpdmat.m |  | 
						
							| 10 |  | chpdmatlem.q |  | 
						
							| 11 |  | chpdmatlem.1 |  | 
						
							| 12 |  | chpdmatlem.m |  | 
						
							| 13 |  | chpdmatlem.z |  | 
						
							| 14 |  | chpdmatlem.t |  | 
						
							| 15 | 2 | ply1ring |  | 
						
							| 16 | 15 | 3ad2ant2 |  | 
						
							| 17 | 16 | ad4antr |  | 
						
							| 18 | 1 2 3 4 5 6 7 8 9 10 11 12 | chpdmatlem0 |  | 
						
							| 19 | 18 | 3adant3 |  | 
						
							| 20 | 19 | ad4antr |  | 
						
							| 21 | 14 3 5 2 10 | mat2pmatbas |  | 
						
							| 22 | 21 | ad4antr |  | 
						
							| 23 |  | simpr |  | 
						
							| 24 | 23 | anim1i |  | 
						
							| 25 | 24 | ad2antrr |  | 
						
							| 26 |  | eqid |  | 
						
							| 27 | 10 26 13 9 | matsubgcell |  | 
						
							| 28 | 17 20 22 25 27 | syl121anc |  | 
						
							| 29 | 16 | ad2antrr |  | 
						
							| 30 |  | eqid |  | 
						
							| 31 | 6 2 30 | vr1cl |  | 
						
							| 32 | 31 | 3ad2ant2 |  | 
						
							| 33 | 2 10 | pmatring |  | 
						
							| 34 | 33 | 3adant3 |  | 
						
							| 35 | 26 11 | ringidcl |  | 
						
							| 36 | 34 35 | syl |  | 
						
							| 37 | 32 36 | jca |  | 
						
							| 38 | 37 | ad2antrr |  | 
						
							| 39 | 29 38 24 | 3jca |  | 
						
							| 40 | 39 | ad2antrr |  | 
						
							| 41 |  | eqid |  | 
						
							| 42 | 10 26 30 12 41 | matvscacell |  | 
						
							| 43 | 40 42 | syl |  | 
						
							| 44 | 43 | oveq1d |  | 
						
							| 45 |  | eqid |  | 
						
							| 46 |  | eqid |  | 
						
							| 47 |  | simpll1 |  | 
						
							| 48 | 23 | adantr |  | 
						
							| 49 |  | simpr |  | 
						
							| 50 | 10 45 46 47 29 48 49 11 | mat1ov |  | 
						
							| 51 |  | ifnefalse |  | 
						
							| 52 | 50 51 | sylan9eq |  | 
						
							| 53 | 52 | oveq2d |  | 
						
							| 54 | 15 31 | jca |  | 
						
							| 55 | 54 | 3ad2ant2 |  | 
						
							| 56 | 30 41 46 | ringrz |  | 
						
							| 57 | 55 56 | syl |  | 
						
							| 58 | 57 | adantr |  | 
						
							| 59 | 58 | ad2antrr |  | 
						
							| 60 | 53 59 | eqtrd |  | 
						
							| 61 | 60 | adantr |  | 
						
							| 62 |  | simpll |  | 
						
							| 63 | 62 24 | jca |  | 
						
							| 64 | 63 | ad2antrr |  | 
						
							| 65 | 14 3 5 2 4 | mat2pmatvalel |  | 
						
							| 66 | 64 65 | syl |  | 
						
							| 67 | 61 66 | oveq12d |  | 
						
							| 68 |  | fveq2 |  | 
						
							| 69 | 68 | adantl |  | 
						
							| 70 | 2 4 7 46 | ply1scl0 |  | 
						
							| 71 | 70 | 3ad2ant2 |  | 
						
							| 72 | 71 | ad4antr |  | 
						
							| 73 | 69 72 | eqtrd |  | 
						
							| 74 | 73 | oveq2d |  | 
						
							| 75 |  | ringgrp |  | 
						
							| 76 | 15 75 | syl |  | 
						
							| 77 | 30 46 | grpidcl |  | 
						
							| 78 | 76 77 | jccir |  | 
						
							| 79 | 78 | 3ad2ant2 |  | 
						
							| 80 | 30 46 9 | grpsubid |  | 
						
							| 81 | 79 80 | syl |  | 
						
							| 82 | 81 | ad4antr |  | 
						
							| 83 | 67 74 82 | 3eqtrd |  | 
						
							| 84 | 28 44 83 | 3eqtrd |  |