Metamath Proof Explorer


Theorem chpdmat

Description: The characteristic polynomial of a diagonal matrix. (Contributed by AV, 18-Aug-2019) (Proof shortened by AV, 21-Nov-2019)

Ref Expression
Hypotheses chpdmat.c C=NCharPlyMatR
chpdmat.p P=Poly1R
chpdmat.a A=NMatR
chpdmat.s S=algScP
chpdmat.b B=BaseA
chpdmat.x X=var1R
chpdmat.0 0˙=0R
chpdmat.g G=mulGrpP
chpdmat.m -˙=-P
Assertion chpdmat NFinRCRingMBiNjNijiMj=0˙CM=GkNX-˙SkMk

Proof

Step Hyp Ref Expression
1 chpdmat.c C=NCharPlyMatR
2 chpdmat.p P=Poly1R
3 chpdmat.a A=NMatR
4 chpdmat.s S=algScP
5 chpdmat.b B=BaseA
6 chpdmat.x X=var1R
7 chpdmat.0 0˙=0R
8 chpdmat.g G=mulGrpP
9 chpdmat.m -˙=-P
10 eqid NMatP=NMatP
11 eqid NmaDetP=NmaDetP
12 eqid -NMatP=-NMatP
13 eqid NMatP=NMatP
14 eqid NmatToPolyMatR=NmatToPolyMatR
15 eqid 1NMatP=1NMatP
16 1 3 5 2 10 11 12 6 13 14 15 chpmatval NFinRCRingMBCM=NmaDetPXNMatP1NMatP-NMatPNmatToPolyMatRM
17 16 adantr NFinRCRingMBiNjNijiMj=0˙CM=NmaDetPXNMatP1NMatP-NMatPNmatToPolyMatRM
18 2 ply1crng RCRingPCRing
19 18 3ad2ant2 NFinRCRingMBPCRing
20 simp1 NFinRCRingMBNFin
21 crngring RCRingRRing
22 21 3anim2i NFinRCRingMBNFinRRingMB
23 1 2 3 4 5 6 7 8 9 10 15 13 12 14 chpdmatlem1 NFinRRingMBXNMatP1NMatP-NMatPNmatToPolyMatRMBaseNMatP
24 22 23 syl NFinRCRingMBXNMatP1NMatP-NMatPNmatToPolyMatRMBaseNMatP
25 19 20 24 3jca NFinRCRingMBPCRingNFinXNMatP1NMatP-NMatPNmatToPolyMatRMBaseNMatP
26 25 adantr NFinRCRingMBiNjNijiMj=0˙PCRingNFinXNMatP1NMatP-NMatPNmatToPolyMatRMBaseNMatP
27 22 anim1i NFinRCRingMBiNNFinRRingMBiN
28 27 anim1i NFinRCRingMBiNjNNFinRRingMBiNjN
29 1 2 3 4 5 6 7 8 9 10 15 13 12 14 chpdmatlem2 NFinRRingMBiNjNijiMj=0˙iXNMatP1NMatP-NMatPNmatToPolyMatRMj=0P
30 28 29 sylanl1 NFinRCRingMBiNjNijiMj=0˙iXNMatP1NMatP-NMatPNmatToPolyMatRMj=0P
31 30 exp31 NFinRCRingMBiNjNijiMj=0˙iXNMatP1NMatP-NMatPNmatToPolyMatRMj=0P
32 31 a2d NFinRCRingMBiNjNijiMj=0˙ijiXNMatP1NMatP-NMatPNmatToPolyMatRMj=0P
33 32 ralimdva NFinRCRingMBiNjNijiMj=0˙jNijiXNMatP1NMatP-NMatPNmatToPolyMatRMj=0P
34 33 ralimdva NFinRCRingMBiNjNijiMj=0˙iNjNijiXNMatP1NMatP-NMatPNmatToPolyMatRMj=0P
35 34 imp NFinRCRingMBiNjNijiMj=0˙iNjNijiXNMatP1NMatP-NMatPNmatToPolyMatRMj=0P
36 eqid BaseNMatP=BaseNMatP
37 eqid 0P=0P
38 11 10 36 8 37 mdetdiag PCRingNFinXNMatP1NMatP-NMatPNmatToPolyMatRMBaseNMatPiNjNijiXNMatP1NMatP-NMatPNmatToPolyMatRMj=0PNmaDetPXNMatP1NMatP-NMatPNmatToPolyMatRM=GkNkXNMatP1NMatP-NMatPNmatToPolyMatRMk
39 26 35 38 sylc NFinRCRingMBiNjNijiMj=0˙NmaDetPXNMatP1NMatP-NMatPNmatToPolyMatRM=GkNkXNMatP1NMatP-NMatPNmatToPolyMatRMk
40 1 2 3 4 5 6 7 8 9 10 15 13 12 14 chpdmatlem3 NFinRRingMBkNkXNMatP1NMatP-NMatPNmatToPolyMatRMk=X-˙SkMk
41 22 40 sylan NFinRCRingMBkNkXNMatP1NMatP-NMatPNmatToPolyMatRMk=X-˙SkMk
42 41 adantlr NFinRCRingMBiNjNijiMj=0˙kNkXNMatP1NMatP-NMatPNmatToPolyMatRMk=X-˙SkMk
43 42 mpteq2dva NFinRCRingMBiNjNijiMj=0˙kNkXNMatP1NMatP-NMatPNmatToPolyMatRMk=kNX-˙SkMk
44 43 oveq2d NFinRCRingMBiNjNijiMj=0˙GkNkXNMatP1NMatP-NMatPNmatToPolyMatRMk=GkNX-˙SkMk
45 17 39 44 3eqtrd NFinRCRingMBiNjNijiMj=0˙CM=GkNX-˙SkMk