Metamath Proof Explorer


Theorem chpdmat

Description: The characteristic polynomial of a diagonal matrix. (Contributed by AV, 18-Aug-2019) (Proof shortened by AV, 21-Nov-2019)

Ref Expression
Hypotheses chpdmat.c C = N CharPlyMat R
chpdmat.p P = Poly 1 R
chpdmat.a A = N Mat R
chpdmat.s S = algSc P
chpdmat.b B = Base A
chpdmat.x X = var 1 R
chpdmat.0 0 ˙ = 0 R
chpdmat.g G = mulGrp P
chpdmat.m - ˙ = - P
Assertion chpdmat N Fin R CRing M B i N j N i j i M j = 0 ˙ C M = G k N X - ˙ S k M k

Proof

Step Hyp Ref Expression
1 chpdmat.c C = N CharPlyMat R
2 chpdmat.p P = Poly 1 R
3 chpdmat.a A = N Mat R
4 chpdmat.s S = algSc P
5 chpdmat.b B = Base A
6 chpdmat.x X = var 1 R
7 chpdmat.0 0 ˙ = 0 R
8 chpdmat.g G = mulGrp P
9 chpdmat.m - ˙ = - P
10 eqid N Mat P = N Mat P
11 eqid N maDet P = N maDet P
12 eqid - N Mat P = - N Mat P
13 eqid N Mat P = N Mat P
14 eqid N matToPolyMat R = N matToPolyMat R
15 eqid 1 N Mat P = 1 N Mat P
16 1 3 5 2 10 11 12 6 13 14 15 chpmatval N Fin R CRing M B C M = N maDet P X N Mat P 1 N Mat P - N Mat P N matToPolyMat R M
17 16 adantr N Fin R CRing M B i N j N i j i M j = 0 ˙ C M = N maDet P X N Mat P 1 N Mat P - N Mat P N matToPolyMat R M
18 2 ply1crng R CRing P CRing
19 18 3ad2ant2 N Fin R CRing M B P CRing
20 simp1 N Fin R CRing M B N Fin
21 crngring R CRing R Ring
22 21 3anim2i N Fin R CRing M B N Fin R Ring M B
23 1 2 3 4 5 6 7 8 9 10 15 13 12 14 chpdmatlem1 N Fin R Ring M B X N Mat P 1 N Mat P - N Mat P N matToPolyMat R M Base N Mat P
24 22 23 syl N Fin R CRing M B X N Mat P 1 N Mat P - N Mat P N matToPolyMat R M Base N Mat P
25 19 20 24 3jca N Fin R CRing M B P CRing N Fin X N Mat P 1 N Mat P - N Mat P N matToPolyMat R M Base N Mat P
26 25 adantr N Fin R CRing M B i N j N i j i M j = 0 ˙ P CRing N Fin X N Mat P 1 N Mat P - N Mat P N matToPolyMat R M Base N Mat P
27 22 anim1i N Fin R CRing M B i N N Fin R Ring M B i N
28 27 anim1i N Fin R CRing M B i N j N N Fin R Ring M B i N j N
29 1 2 3 4 5 6 7 8 9 10 15 13 12 14 chpdmatlem2 N Fin R Ring M B i N j N i j i M j = 0 ˙ i X N Mat P 1 N Mat P - N Mat P N matToPolyMat R M j = 0 P
30 28 29 sylanl1 N Fin R CRing M B i N j N i j i M j = 0 ˙ i X N Mat P 1 N Mat P - N Mat P N matToPolyMat R M j = 0 P
31 30 exp31 N Fin R CRing M B i N j N i j i M j = 0 ˙ i X N Mat P 1 N Mat P - N Mat P N matToPolyMat R M j = 0 P
32 31 a2d N Fin R CRing M B i N j N i j i M j = 0 ˙ i j i X N Mat P 1 N Mat P - N Mat P N matToPolyMat R M j = 0 P
33 32 ralimdva N Fin R CRing M B i N j N i j i M j = 0 ˙ j N i j i X N Mat P 1 N Mat P - N Mat P N matToPolyMat R M j = 0 P
34 33 ralimdva N Fin R CRing M B i N j N i j i M j = 0 ˙ i N j N i j i X N Mat P 1 N Mat P - N Mat P N matToPolyMat R M j = 0 P
35 34 imp N Fin R CRing M B i N j N i j i M j = 0 ˙ i N j N i j i X N Mat P 1 N Mat P - N Mat P N matToPolyMat R M j = 0 P
36 eqid Base N Mat P = Base N Mat P
37 eqid 0 P = 0 P
38 11 10 36 8 37 mdetdiag P CRing N Fin X N Mat P 1 N Mat P - N Mat P N matToPolyMat R M Base N Mat P i N j N i j i X N Mat P 1 N Mat P - N Mat P N matToPolyMat R M j = 0 P N maDet P X N Mat P 1 N Mat P - N Mat P N matToPolyMat R M = G k N k X N Mat P 1 N Mat P - N Mat P N matToPolyMat R M k
39 26 35 38 sylc N Fin R CRing M B i N j N i j i M j = 0 ˙ N maDet P X N Mat P 1 N Mat P - N Mat P N matToPolyMat R M = G k N k X N Mat P 1 N Mat P - N Mat P N matToPolyMat R M k
40 1 2 3 4 5 6 7 8 9 10 15 13 12 14 chpdmatlem3 N Fin R Ring M B k N k X N Mat P 1 N Mat P - N Mat P N matToPolyMat R M k = X - ˙ S k M k
41 22 40 sylan N Fin R CRing M B k N k X N Mat P 1 N Mat P - N Mat P N matToPolyMat R M k = X - ˙ S k M k
42 41 adantlr N Fin R CRing M B i N j N i j i M j = 0 ˙ k N k X N Mat P 1 N Mat P - N Mat P N matToPolyMat R M k = X - ˙ S k M k
43 42 mpteq2dva N Fin R CRing M B i N j N i j i M j = 0 ˙ k N k X N Mat P 1 N Mat P - N Mat P N matToPolyMat R M k = k N X - ˙ S k M k
44 43 oveq2d N Fin R CRing M B i N j N i j i M j = 0 ˙ G k N k X N Mat P 1 N Mat P - N Mat P N matToPolyMat R M k = G k N X - ˙ S k M k
45 17 39 44 3eqtrd N Fin R CRing M B i N j N i j i M j = 0 ˙ C M = G k N X - ˙ S k M k