Metamath Proof Explorer


Theorem chpdmatlem1

Description: Lemma 1 for chpdmat . (Contributed by AV, 18-Aug-2019)

Ref Expression
Hypotheses chpdmat.c C = N CharPlyMat R
chpdmat.p P = Poly 1 R
chpdmat.a A = N Mat R
chpdmat.s S = algSc P
chpdmat.b B = Base A
chpdmat.x X = var 1 R
chpdmat.0 0 ˙ = 0 R
chpdmat.g G = mulGrp P
chpdmat.m - ˙ = - P
chpdmatlem.q Q = N Mat P
chpdmatlem.1 1 ˙ = 1 Q
chpdmatlem.m · ˙ = Q
chpdmatlem.z Z = - Q
chpdmatlem.t T = N matToPolyMat R
Assertion chpdmatlem1 N Fin R Ring M B X · ˙ 1 ˙ Z T M Base Q

Proof

Step Hyp Ref Expression
1 chpdmat.c C = N CharPlyMat R
2 chpdmat.p P = Poly 1 R
3 chpdmat.a A = N Mat R
4 chpdmat.s S = algSc P
5 chpdmat.b B = Base A
6 chpdmat.x X = var 1 R
7 chpdmat.0 0 ˙ = 0 R
8 chpdmat.g G = mulGrp P
9 chpdmat.m - ˙ = - P
10 chpdmatlem.q Q = N Mat P
11 chpdmatlem.1 1 ˙ = 1 Q
12 chpdmatlem.m · ˙ = Q
13 chpdmatlem.z Z = - Q
14 chpdmatlem.t T = N matToPolyMat R
15 2 10 pmatring N Fin R Ring Q Ring
16 15 3adant3 N Fin R Ring M B Q Ring
17 ringgrp Q Ring Q Grp
18 16 17 syl N Fin R Ring M B Q Grp
19 1 2 3 4 5 6 7 8 9 10 11 12 chpdmatlem0 N Fin R Ring X · ˙ 1 ˙ Base Q
20 19 3adant3 N Fin R Ring M B X · ˙ 1 ˙ Base Q
21 14 3 5 2 10 mat2pmatbas N Fin R Ring M B T M Base Q
22 eqid Base Q = Base Q
23 22 13 grpsubcl Q Grp X · ˙ 1 ˙ Base Q T M Base Q X · ˙ 1 ˙ Z T M Base Q
24 18 20 21 23 syl3anc N Fin R Ring M B X · ˙ 1 ˙ Z T M Base Q