Metamath Proof Explorer


Theorem chpdmatlem1

Description: Lemma 1 for chpdmat . (Contributed by AV, 18-Aug-2019)

Ref Expression
Hypotheses chpdmat.c
|- C = ( N CharPlyMat R )
chpdmat.p
|- P = ( Poly1 ` R )
chpdmat.a
|- A = ( N Mat R )
chpdmat.s
|- S = ( algSc ` P )
chpdmat.b
|- B = ( Base ` A )
chpdmat.x
|- X = ( var1 ` R )
chpdmat.0
|- .0. = ( 0g ` R )
chpdmat.g
|- G = ( mulGrp ` P )
chpdmat.m
|- .- = ( -g ` P )
chpdmatlem.q
|- Q = ( N Mat P )
chpdmatlem.1
|- .1. = ( 1r ` Q )
chpdmatlem.m
|- .x. = ( .s ` Q )
chpdmatlem.z
|- Z = ( -g ` Q )
chpdmatlem.t
|- T = ( N matToPolyMat R )
Assertion chpdmatlem1
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( ( X .x. .1. ) Z ( T ` M ) ) e. ( Base ` Q ) )

Proof

Step Hyp Ref Expression
1 chpdmat.c
 |-  C = ( N CharPlyMat R )
2 chpdmat.p
 |-  P = ( Poly1 ` R )
3 chpdmat.a
 |-  A = ( N Mat R )
4 chpdmat.s
 |-  S = ( algSc ` P )
5 chpdmat.b
 |-  B = ( Base ` A )
6 chpdmat.x
 |-  X = ( var1 ` R )
7 chpdmat.0
 |-  .0. = ( 0g ` R )
8 chpdmat.g
 |-  G = ( mulGrp ` P )
9 chpdmat.m
 |-  .- = ( -g ` P )
10 chpdmatlem.q
 |-  Q = ( N Mat P )
11 chpdmatlem.1
 |-  .1. = ( 1r ` Q )
12 chpdmatlem.m
 |-  .x. = ( .s ` Q )
13 chpdmatlem.z
 |-  Z = ( -g ` Q )
14 chpdmatlem.t
 |-  T = ( N matToPolyMat R )
15 2 10 pmatring
 |-  ( ( N e. Fin /\ R e. Ring ) -> Q e. Ring )
16 15 3adant3
 |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> Q e. Ring )
17 ringgrp
 |-  ( Q e. Ring -> Q e. Grp )
18 16 17 syl
 |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> Q e. Grp )
19 1 2 3 4 5 6 7 8 9 10 11 12 chpdmatlem0
 |-  ( ( N e. Fin /\ R e. Ring ) -> ( X .x. .1. ) e. ( Base ` Q ) )
20 19 3adant3
 |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( X .x. .1. ) e. ( Base ` Q ) )
21 14 3 5 2 10 mat2pmatbas
 |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( T ` M ) e. ( Base ` Q ) )
22 eqid
 |-  ( Base ` Q ) = ( Base ` Q )
23 22 13 grpsubcl
 |-  ( ( Q e. Grp /\ ( X .x. .1. ) e. ( Base ` Q ) /\ ( T ` M ) e. ( Base ` Q ) ) -> ( ( X .x. .1. ) Z ( T ` M ) ) e. ( Base ` Q ) )
24 18 20 21 23 syl3anc
 |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( ( X .x. .1. ) Z ( T ` M ) ) e. ( Base ` Q ) )