| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chpdmat.c |  |-  C = ( N CharPlyMat R ) | 
						
							| 2 |  | chpdmat.p |  |-  P = ( Poly1 ` R ) | 
						
							| 3 |  | chpdmat.a |  |-  A = ( N Mat R ) | 
						
							| 4 |  | chpdmat.s |  |-  S = ( algSc ` P ) | 
						
							| 5 |  | chpdmat.b |  |-  B = ( Base ` A ) | 
						
							| 6 |  | chpdmat.x |  |-  X = ( var1 ` R ) | 
						
							| 7 |  | chpdmat.0 |  |-  .0. = ( 0g ` R ) | 
						
							| 8 |  | chpdmat.g |  |-  G = ( mulGrp ` P ) | 
						
							| 9 |  | chpdmat.m |  |-  .- = ( -g ` P ) | 
						
							| 10 |  | chpdmatlem.q |  |-  Q = ( N Mat P ) | 
						
							| 11 |  | chpdmatlem.1 |  |-  .1. = ( 1r ` Q ) | 
						
							| 12 |  | chpdmatlem.m |  |-  .x. = ( .s ` Q ) | 
						
							| 13 |  | chpdmatlem.z |  |-  Z = ( -g ` Q ) | 
						
							| 14 |  | chpdmatlem.t |  |-  T = ( N matToPolyMat R ) | 
						
							| 15 | 2 10 | pmatring |  |-  ( ( N e. Fin /\ R e. Ring ) -> Q e. Ring ) | 
						
							| 16 | 15 | 3adant3 |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> Q e. Ring ) | 
						
							| 17 |  | ringgrp |  |-  ( Q e. Ring -> Q e. Grp ) | 
						
							| 18 | 16 17 | syl |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> Q e. Grp ) | 
						
							| 19 | 1 2 3 4 5 6 7 8 9 10 11 12 | chpdmatlem0 |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( X .x. .1. ) e. ( Base ` Q ) ) | 
						
							| 20 | 19 | 3adant3 |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( X .x. .1. ) e. ( Base ` Q ) ) | 
						
							| 21 | 14 3 5 2 10 | mat2pmatbas |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( T ` M ) e. ( Base ` Q ) ) | 
						
							| 22 |  | eqid |  |-  ( Base ` Q ) = ( Base ` Q ) | 
						
							| 23 | 22 13 | grpsubcl |  |-  ( ( Q e. Grp /\ ( X .x. .1. ) e. ( Base ` Q ) /\ ( T ` M ) e. ( Base ` Q ) ) -> ( ( X .x. .1. ) Z ( T ` M ) ) e. ( Base ` Q ) ) | 
						
							| 24 | 18 20 21 23 | syl3anc |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( ( X .x. .1. ) Z ( T ` M ) ) e. ( Base ` Q ) ) |