| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chpdmat.c | ⊢ 𝐶  =  ( 𝑁  CharPlyMat  𝑅 ) | 
						
							| 2 |  | chpdmat.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 3 |  | chpdmat.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 4 |  | chpdmat.s | ⊢ 𝑆  =  ( algSc ‘ 𝑃 ) | 
						
							| 5 |  | chpdmat.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 6 |  | chpdmat.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 7 |  | chpdmat.0 | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 8 |  | chpdmat.g | ⊢ 𝐺  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 9 |  | chpdmat.m | ⊢  −   =  ( -g ‘ 𝑃 ) | 
						
							| 10 |  | chpdmatlem.q | ⊢ 𝑄  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 11 |  | chpdmatlem.1 | ⊢  1   =  ( 1r ‘ 𝑄 ) | 
						
							| 12 |  | chpdmatlem.m | ⊢  ·   =  (  ·𝑠  ‘ 𝑄 ) | 
						
							| 13 |  | chpdmatlem.z | ⊢ 𝑍  =  ( -g ‘ 𝑄 ) | 
						
							| 14 |  | chpdmatlem.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 15 | 2 10 | pmatring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑄  ∈  Ring ) | 
						
							| 16 | 15 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝑄  ∈  Ring ) | 
						
							| 17 |  | ringgrp | ⊢ ( 𝑄  ∈  Ring  →  𝑄  ∈  Grp ) | 
						
							| 18 | 16 17 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝑄  ∈  Grp ) | 
						
							| 19 | 1 2 3 4 5 6 7 8 9 10 11 12 | chpdmatlem0 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑋  ·   1  )  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 20 | 19 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑋  ·   1  )  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 21 | 14 3 5 2 10 | mat2pmatbas | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑇 ‘ 𝑀 )  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 22 |  | eqid | ⊢ ( Base ‘ 𝑄 )  =  ( Base ‘ 𝑄 ) | 
						
							| 23 | 22 13 | grpsubcl | ⊢ ( ( 𝑄  ∈  Grp  ∧  ( 𝑋  ·   1  )  ∈  ( Base ‘ 𝑄 )  ∧  ( 𝑇 ‘ 𝑀 )  ∈  ( Base ‘ 𝑄 ) )  →  ( ( 𝑋  ·   1  ) 𝑍 ( 𝑇 ‘ 𝑀 ) )  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 24 | 18 20 21 23 | syl3anc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ( 𝑋  ·   1  ) 𝑍 ( 𝑇 ‘ 𝑀 ) )  ∈  ( Base ‘ 𝑄 ) ) |