| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chpdmat.c | ⊢ 𝐶  =  ( 𝑁  CharPlyMat  𝑅 ) | 
						
							| 2 |  | chpdmat.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 3 |  | chpdmat.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 4 |  | chpdmat.s | ⊢ 𝑆  =  ( algSc ‘ 𝑃 ) | 
						
							| 5 |  | chpdmat.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 6 |  | chpdmat.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 7 |  | chpdmat.0 | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 8 |  | chpdmat.g | ⊢ 𝐺  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 9 |  | chpdmat.m | ⊢  −   =  ( -g ‘ 𝑃 ) | 
						
							| 10 |  | chpdmatlem.q | ⊢ 𝑄  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 11 |  | chpdmatlem.1 | ⊢  1   =  ( 1r ‘ 𝑄 ) | 
						
							| 12 |  | chpdmatlem.m | ⊢  ·   =  (  ·𝑠  ‘ 𝑄 ) | 
						
							| 13 |  | chpdmatlem.z | ⊢ 𝑍  =  ( -g ‘ 𝑄 ) | 
						
							| 14 |  | chpdmatlem.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 15 | 2 | ply1ring | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring ) | 
						
							| 16 | 15 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝑃  ∈  Ring ) | 
						
							| 17 | 16 | ad4antr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  ∧  𝑖  ≠  𝑗 )  ∧  ( 𝑖 𝑀 𝑗 )  =   0  )  →  𝑃  ∈  Ring ) | 
						
							| 18 | 1 2 3 4 5 6 7 8 9 10 11 12 | chpdmatlem0 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑋  ·   1  )  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 19 | 18 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑋  ·   1  )  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 20 | 19 | ad4antr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  ∧  𝑖  ≠  𝑗 )  ∧  ( 𝑖 𝑀 𝑗 )  =   0  )  →  ( 𝑋  ·   1  )  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 21 | 14 3 5 2 10 | mat2pmatbas | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑇 ‘ 𝑀 )  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 22 | 21 | ad4antr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  ∧  𝑖  ≠  𝑗 )  ∧  ( 𝑖 𝑀 𝑗 )  =   0  )  →  ( 𝑇 ‘ 𝑀 )  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 23 |  | simpr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁 )  →  𝑖  ∈  𝑁 ) | 
						
							| 24 | 23 | anim1i | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  →  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) ) | 
						
							| 25 | 24 | ad2antrr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  ∧  𝑖  ≠  𝑗 )  ∧  ( 𝑖 𝑀 𝑗 )  =   0  )  →  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) ) | 
						
							| 26 |  | eqid | ⊢ ( Base ‘ 𝑄 )  =  ( Base ‘ 𝑄 ) | 
						
							| 27 | 10 26 13 9 | matsubgcell | ⊢ ( ( 𝑃  ∈  Ring  ∧  ( ( 𝑋  ·   1  )  ∈  ( Base ‘ 𝑄 )  ∧  ( 𝑇 ‘ 𝑀 )  ∈  ( Base ‘ 𝑄 ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑖 ( ( 𝑋  ·   1  ) 𝑍 ( 𝑇 ‘ 𝑀 ) ) 𝑗 )  =  ( ( 𝑖 ( 𝑋  ·   1  ) 𝑗 )  −  ( 𝑖 ( 𝑇 ‘ 𝑀 ) 𝑗 ) ) ) | 
						
							| 28 | 17 20 22 25 27 | syl121anc | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  ∧  𝑖  ≠  𝑗 )  ∧  ( 𝑖 𝑀 𝑗 )  =   0  )  →  ( 𝑖 ( ( 𝑋  ·   1  ) 𝑍 ( 𝑇 ‘ 𝑀 ) ) 𝑗 )  =  ( ( 𝑖 ( 𝑋  ·   1  ) 𝑗 )  −  ( 𝑖 ( 𝑇 ‘ 𝑀 ) 𝑗 ) ) ) | 
						
							| 29 | 16 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  →  𝑃  ∈  Ring ) | 
						
							| 30 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 31 | 6 2 30 | vr1cl | ⊢ ( 𝑅  ∈  Ring  →  𝑋  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 32 | 31 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝑋  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 33 | 2 10 | pmatring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑄  ∈  Ring ) | 
						
							| 34 | 33 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝑄  ∈  Ring ) | 
						
							| 35 | 26 11 | ringidcl | ⊢ ( 𝑄  ∈  Ring  →   1   ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 36 | 34 35 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →   1   ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 37 | 32 36 | jca | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑋  ∈  ( Base ‘ 𝑃 )  ∧   1   ∈  ( Base ‘ 𝑄 ) ) ) | 
						
							| 38 | 37 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  →  ( 𝑋  ∈  ( Base ‘ 𝑃 )  ∧   1   ∈  ( Base ‘ 𝑄 ) ) ) | 
						
							| 39 | 29 38 24 | 3jca | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  →  ( 𝑃  ∈  Ring  ∧  ( 𝑋  ∈  ( Base ‘ 𝑃 )  ∧   1   ∈  ( Base ‘ 𝑄 ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) ) ) | 
						
							| 40 | 39 | ad2antrr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  ∧  𝑖  ≠  𝑗 )  ∧  ( 𝑖 𝑀 𝑗 )  =   0  )  →  ( 𝑃  ∈  Ring  ∧  ( 𝑋  ∈  ( Base ‘ 𝑃 )  ∧   1   ∈  ( Base ‘ 𝑄 ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) ) ) | 
						
							| 41 |  | eqid | ⊢ ( .r ‘ 𝑃 )  =  ( .r ‘ 𝑃 ) | 
						
							| 42 | 10 26 30 12 41 | matvscacell | ⊢ ( ( 𝑃  ∈  Ring  ∧  ( 𝑋  ∈  ( Base ‘ 𝑃 )  ∧   1   ∈  ( Base ‘ 𝑄 ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑖 ( 𝑋  ·   1  ) 𝑗 )  =  ( 𝑋 ( .r ‘ 𝑃 ) ( 𝑖  1  𝑗 ) ) ) | 
						
							| 43 | 40 42 | syl | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  ∧  𝑖  ≠  𝑗 )  ∧  ( 𝑖 𝑀 𝑗 )  =   0  )  →  ( 𝑖 ( 𝑋  ·   1  ) 𝑗 )  =  ( 𝑋 ( .r ‘ 𝑃 ) ( 𝑖  1  𝑗 ) ) ) | 
						
							| 44 | 43 | oveq1d | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  ∧  𝑖  ≠  𝑗 )  ∧  ( 𝑖 𝑀 𝑗 )  =   0  )  →  ( ( 𝑖 ( 𝑋  ·   1  ) 𝑗 )  −  ( 𝑖 ( 𝑇 ‘ 𝑀 ) 𝑗 ) )  =  ( ( 𝑋 ( .r ‘ 𝑃 ) ( 𝑖  1  𝑗 ) )  −  ( 𝑖 ( 𝑇 ‘ 𝑀 ) 𝑗 ) ) ) | 
						
							| 45 |  | eqid | ⊢ ( 1r ‘ 𝑃 )  =  ( 1r ‘ 𝑃 ) | 
						
							| 46 |  | eqid | ⊢ ( 0g ‘ 𝑃 )  =  ( 0g ‘ 𝑃 ) | 
						
							| 47 |  | simpll1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  →  𝑁  ∈  Fin ) | 
						
							| 48 | 23 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  →  𝑖  ∈  𝑁 ) | 
						
							| 49 |  | simpr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  →  𝑗  ∈  𝑁 ) | 
						
							| 50 | 10 45 46 47 29 48 49 11 | mat1ov | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  →  ( 𝑖  1  𝑗 )  =  if ( 𝑖  =  𝑗 ,  ( 1r ‘ 𝑃 ) ,  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 51 |  | ifnefalse | ⊢ ( 𝑖  ≠  𝑗  →  if ( 𝑖  =  𝑗 ,  ( 1r ‘ 𝑃 ) ,  ( 0g ‘ 𝑃 ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 52 | 50 51 | sylan9eq | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  ∧  𝑖  ≠  𝑗 )  →  ( 𝑖  1  𝑗 )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 53 | 52 | oveq2d | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  ∧  𝑖  ≠  𝑗 )  →  ( 𝑋 ( .r ‘ 𝑃 ) ( 𝑖  1  𝑗 ) )  =  ( 𝑋 ( .r ‘ 𝑃 ) ( 0g ‘ 𝑃 ) ) ) | 
						
							| 54 | 15 31 | jca | ⊢ ( 𝑅  ∈  Ring  →  ( 𝑃  ∈  Ring  ∧  𝑋  ∈  ( Base ‘ 𝑃 ) ) ) | 
						
							| 55 | 54 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑃  ∈  Ring  ∧  𝑋  ∈  ( Base ‘ 𝑃 ) ) ) | 
						
							| 56 | 30 41 46 | ringrz | ⊢ ( ( 𝑃  ∈  Ring  ∧  𝑋  ∈  ( Base ‘ 𝑃 ) )  →  ( 𝑋 ( .r ‘ 𝑃 ) ( 0g ‘ 𝑃 ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 57 | 55 56 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑋 ( .r ‘ 𝑃 ) ( 0g ‘ 𝑃 ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 58 | 57 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁 )  →  ( 𝑋 ( .r ‘ 𝑃 ) ( 0g ‘ 𝑃 ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 59 | 58 | ad2antrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  ∧  𝑖  ≠  𝑗 )  →  ( 𝑋 ( .r ‘ 𝑃 ) ( 0g ‘ 𝑃 ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 60 | 53 59 | eqtrd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  ∧  𝑖  ≠  𝑗 )  →  ( 𝑋 ( .r ‘ 𝑃 ) ( 𝑖  1  𝑗 ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 61 | 60 | adantr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  ∧  𝑖  ≠  𝑗 )  ∧  ( 𝑖 𝑀 𝑗 )  =   0  )  →  ( 𝑋 ( .r ‘ 𝑃 ) ( 𝑖  1  𝑗 ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 62 |  | simpll | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 ) ) | 
						
							| 63 | 62 24 | jca | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) ) ) | 
						
							| 64 | 63 | ad2antrr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  ∧  𝑖  ≠  𝑗 )  ∧  ( 𝑖 𝑀 𝑗 )  =   0  )  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) ) ) | 
						
							| 65 | 14 3 5 2 4 | mat2pmatvalel | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑖 ( 𝑇 ‘ 𝑀 ) 𝑗 )  =  ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) ) | 
						
							| 66 | 64 65 | syl | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  ∧  𝑖  ≠  𝑗 )  ∧  ( 𝑖 𝑀 𝑗 )  =   0  )  →  ( 𝑖 ( 𝑇 ‘ 𝑀 ) 𝑗 )  =  ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) ) | 
						
							| 67 | 61 66 | oveq12d | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  ∧  𝑖  ≠  𝑗 )  ∧  ( 𝑖 𝑀 𝑗 )  =   0  )  →  ( ( 𝑋 ( .r ‘ 𝑃 ) ( 𝑖  1  𝑗 ) )  −  ( 𝑖 ( 𝑇 ‘ 𝑀 ) 𝑗 ) )  =  ( ( 0g ‘ 𝑃 )  −  ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) ) ) | 
						
							| 68 |  | fveq2 | ⊢ ( ( 𝑖 𝑀 𝑗 )  =   0   →  ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) )  =  ( 𝑆 ‘  0  ) ) | 
						
							| 69 | 68 | adantl | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  ∧  𝑖  ≠  𝑗 )  ∧  ( 𝑖 𝑀 𝑗 )  =   0  )  →  ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) )  =  ( 𝑆 ‘  0  ) ) | 
						
							| 70 | 2 4 7 46 | ply1scl0 | ⊢ ( 𝑅  ∈  Ring  →  ( 𝑆 ‘  0  )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 71 | 70 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑆 ‘  0  )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 72 | 71 | ad4antr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  ∧  𝑖  ≠  𝑗 )  ∧  ( 𝑖 𝑀 𝑗 )  =   0  )  →  ( 𝑆 ‘  0  )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 73 | 69 72 | eqtrd | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  ∧  𝑖  ≠  𝑗 )  ∧  ( 𝑖 𝑀 𝑗 )  =   0  )  →  ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 74 | 73 | oveq2d | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  ∧  𝑖  ≠  𝑗 )  ∧  ( 𝑖 𝑀 𝑗 )  =   0  )  →  ( ( 0g ‘ 𝑃 )  −  ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) )  =  ( ( 0g ‘ 𝑃 )  −  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 75 |  | ringgrp | ⊢ ( 𝑃  ∈  Ring  →  𝑃  ∈  Grp ) | 
						
							| 76 | 15 75 | syl | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Grp ) | 
						
							| 77 | 30 46 | grpidcl | ⊢ ( 𝑃  ∈  Grp  →  ( 0g ‘ 𝑃 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 78 | 76 77 | jccir | ⊢ ( 𝑅  ∈  Ring  →  ( 𝑃  ∈  Grp  ∧  ( 0g ‘ 𝑃 )  ∈  ( Base ‘ 𝑃 ) ) ) | 
						
							| 79 | 78 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑃  ∈  Grp  ∧  ( 0g ‘ 𝑃 )  ∈  ( Base ‘ 𝑃 ) ) ) | 
						
							| 80 | 30 46 9 | grpsubid | ⊢ ( ( 𝑃  ∈  Grp  ∧  ( 0g ‘ 𝑃 )  ∈  ( Base ‘ 𝑃 ) )  →  ( ( 0g ‘ 𝑃 )  −  ( 0g ‘ 𝑃 ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 81 | 79 80 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ( 0g ‘ 𝑃 )  −  ( 0g ‘ 𝑃 ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 82 | 81 | ad4antr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  ∧  𝑖  ≠  𝑗 )  ∧  ( 𝑖 𝑀 𝑗 )  =   0  )  →  ( ( 0g ‘ 𝑃 )  −  ( 0g ‘ 𝑃 ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 83 | 67 74 82 | 3eqtrd | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  ∧  𝑖  ≠  𝑗 )  ∧  ( 𝑖 𝑀 𝑗 )  =   0  )  →  ( ( 𝑋 ( .r ‘ 𝑃 ) ( 𝑖  1  𝑗 ) )  −  ( 𝑖 ( 𝑇 ‘ 𝑀 ) 𝑗 ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 84 | 28 44 83 | 3eqtrd | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  ∧  𝑖  ≠  𝑗 )  ∧  ( 𝑖 𝑀 𝑗 )  =   0  )  →  ( 𝑖 ( ( 𝑋  ·   1  ) 𝑍 ( 𝑇 ‘ 𝑀 ) ) 𝑗 )  =  ( 0g ‘ 𝑃 ) ) |