| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chpdmat.c |
⊢ 𝐶 = ( 𝑁 CharPlyMat 𝑅 ) |
| 2 |
|
chpdmat.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 3 |
|
chpdmat.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 4 |
|
chpdmat.s |
⊢ 𝑆 = ( algSc ‘ 𝑃 ) |
| 5 |
|
chpdmat.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
| 6 |
|
chpdmat.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
| 7 |
|
chpdmat.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 8 |
|
chpdmat.g |
⊢ 𝐺 = ( mulGrp ‘ 𝑃 ) |
| 9 |
|
chpdmat.m |
⊢ − = ( -g ‘ 𝑃 ) |
| 10 |
|
chpdmatlem.q |
⊢ 𝑄 = ( 𝑁 Mat 𝑃 ) |
| 11 |
|
chpdmatlem.1 |
⊢ 1 = ( 1r ‘ 𝑄 ) |
| 12 |
|
chpdmatlem.m |
⊢ · = ( ·𝑠 ‘ 𝑄 ) |
| 13 |
|
chpdmatlem.z |
⊢ 𝑍 = ( -g ‘ 𝑄 ) |
| 14 |
|
chpdmatlem.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
| 15 |
2
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 16 |
15
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝑃 ∈ Ring ) |
| 17 |
16
|
ad4antr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑖 ≠ 𝑗 ) ∧ ( 𝑖 𝑀 𝑗 ) = 0 ) → 𝑃 ∈ Ring ) |
| 18 |
1 2 3 4 5 6 7 8 9 10 11 12
|
chpdmatlem0 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑋 · 1 ) ∈ ( Base ‘ 𝑄 ) ) |
| 19 |
18
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑋 · 1 ) ∈ ( Base ‘ 𝑄 ) ) |
| 20 |
19
|
ad4antr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑖 ≠ 𝑗 ) ∧ ( 𝑖 𝑀 𝑗 ) = 0 ) → ( 𝑋 · 1 ) ∈ ( Base ‘ 𝑄 ) ) |
| 21 |
14 3 5 2 10
|
mat2pmatbas |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝑄 ) ) |
| 22 |
21
|
ad4antr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑖 ≠ 𝑗 ) ∧ ( 𝑖 𝑀 𝑗 ) = 0 ) → ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝑄 ) ) |
| 23 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝑁 ) → 𝑖 ∈ 𝑁 ) |
| 24 |
23
|
anim1i |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) |
| 25 |
24
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑖 ≠ 𝑗 ) ∧ ( 𝑖 𝑀 𝑗 ) = 0 ) → ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) |
| 26 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
| 27 |
10 26 13 9
|
matsubgcell |
⊢ ( ( 𝑃 ∈ Ring ∧ ( ( 𝑋 · 1 ) ∈ ( Base ‘ 𝑄 ) ∧ ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑖 ( ( 𝑋 · 1 ) 𝑍 ( 𝑇 ‘ 𝑀 ) ) 𝑗 ) = ( ( 𝑖 ( 𝑋 · 1 ) 𝑗 ) − ( 𝑖 ( 𝑇 ‘ 𝑀 ) 𝑗 ) ) ) |
| 28 |
17 20 22 25 27
|
syl121anc |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑖 ≠ 𝑗 ) ∧ ( 𝑖 𝑀 𝑗 ) = 0 ) → ( 𝑖 ( ( 𝑋 · 1 ) 𝑍 ( 𝑇 ‘ 𝑀 ) ) 𝑗 ) = ( ( 𝑖 ( 𝑋 · 1 ) 𝑗 ) − ( 𝑖 ( 𝑇 ‘ 𝑀 ) 𝑗 ) ) ) |
| 29 |
16
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) → 𝑃 ∈ Ring ) |
| 30 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 31 |
6 2 30
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
| 32 |
31
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
| 33 |
2 10
|
pmatring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑄 ∈ Ring ) |
| 34 |
33
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝑄 ∈ Ring ) |
| 35 |
26 11
|
ringidcl |
⊢ ( 𝑄 ∈ Ring → 1 ∈ ( Base ‘ 𝑄 ) ) |
| 36 |
34 35
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 1 ∈ ( Base ‘ 𝑄 ) ) |
| 37 |
32 36
|
jca |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑋 ∈ ( Base ‘ 𝑃 ) ∧ 1 ∈ ( Base ‘ 𝑄 ) ) ) |
| 38 |
37
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) → ( 𝑋 ∈ ( Base ‘ 𝑃 ) ∧ 1 ∈ ( Base ‘ 𝑄 ) ) ) |
| 39 |
29 38 24
|
3jca |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) → ( 𝑃 ∈ Ring ∧ ( 𝑋 ∈ ( Base ‘ 𝑃 ) ∧ 1 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ) |
| 40 |
39
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑖 ≠ 𝑗 ) ∧ ( 𝑖 𝑀 𝑗 ) = 0 ) → ( 𝑃 ∈ Ring ∧ ( 𝑋 ∈ ( Base ‘ 𝑃 ) ∧ 1 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ) |
| 41 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
| 42 |
10 26 30 12 41
|
matvscacell |
⊢ ( ( 𝑃 ∈ Ring ∧ ( 𝑋 ∈ ( Base ‘ 𝑃 ) ∧ 1 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑖 ( 𝑋 · 1 ) 𝑗 ) = ( 𝑋 ( .r ‘ 𝑃 ) ( 𝑖 1 𝑗 ) ) ) |
| 43 |
40 42
|
syl |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑖 ≠ 𝑗 ) ∧ ( 𝑖 𝑀 𝑗 ) = 0 ) → ( 𝑖 ( 𝑋 · 1 ) 𝑗 ) = ( 𝑋 ( .r ‘ 𝑃 ) ( 𝑖 1 𝑗 ) ) ) |
| 44 |
43
|
oveq1d |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑖 ≠ 𝑗 ) ∧ ( 𝑖 𝑀 𝑗 ) = 0 ) → ( ( 𝑖 ( 𝑋 · 1 ) 𝑗 ) − ( 𝑖 ( 𝑇 ‘ 𝑀 ) 𝑗 ) ) = ( ( 𝑋 ( .r ‘ 𝑃 ) ( 𝑖 1 𝑗 ) ) − ( 𝑖 ( 𝑇 ‘ 𝑀 ) 𝑗 ) ) ) |
| 45 |
|
eqid |
⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) |
| 46 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
| 47 |
|
simpll1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) → 𝑁 ∈ Fin ) |
| 48 |
23
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) → 𝑖 ∈ 𝑁 ) |
| 49 |
|
simpr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) → 𝑗 ∈ 𝑁 ) |
| 50 |
10 45 46 47 29 48 49 11
|
mat1ov |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 1 𝑗 ) = if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑃 ) , ( 0g ‘ 𝑃 ) ) ) |
| 51 |
|
ifnefalse |
⊢ ( 𝑖 ≠ 𝑗 → if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑃 ) , ( 0g ‘ 𝑃 ) ) = ( 0g ‘ 𝑃 ) ) |
| 52 |
50 51
|
sylan9eq |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑖 ≠ 𝑗 ) → ( 𝑖 1 𝑗 ) = ( 0g ‘ 𝑃 ) ) |
| 53 |
52
|
oveq2d |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑖 ≠ 𝑗 ) → ( 𝑋 ( .r ‘ 𝑃 ) ( 𝑖 1 𝑗 ) ) = ( 𝑋 ( .r ‘ 𝑃 ) ( 0g ‘ 𝑃 ) ) ) |
| 54 |
15 31
|
jca |
⊢ ( 𝑅 ∈ Ring → ( 𝑃 ∈ Ring ∧ 𝑋 ∈ ( Base ‘ 𝑃 ) ) ) |
| 55 |
54
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑃 ∈ Ring ∧ 𝑋 ∈ ( Base ‘ 𝑃 ) ) ) |
| 56 |
30 41 46
|
ringrz |
⊢ ( ( 𝑃 ∈ Ring ∧ 𝑋 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑋 ( .r ‘ 𝑃 ) ( 0g ‘ 𝑃 ) ) = ( 0g ‘ 𝑃 ) ) |
| 57 |
55 56
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑋 ( .r ‘ 𝑃 ) ( 0g ‘ 𝑃 ) ) = ( 0g ‘ 𝑃 ) ) |
| 58 |
57
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝑁 ) → ( 𝑋 ( .r ‘ 𝑃 ) ( 0g ‘ 𝑃 ) ) = ( 0g ‘ 𝑃 ) ) |
| 59 |
58
|
ad2antrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑖 ≠ 𝑗 ) → ( 𝑋 ( .r ‘ 𝑃 ) ( 0g ‘ 𝑃 ) ) = ( 0g ‘ 𝑃 ) ) |
| 60 |
53 59
|
eqtrd |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑖 ≠ 𝑗 ) → ( 𝑋 ( .r ‘ 𝑃 ) ( 𝑖 1 𝑗 ) ) = ( 0g ‘ 𝑃 ) ) |
| 61 |
60
|
adantr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑖 ≠ 𝑗 ) ∧ ( 𝑖 𝑀 𝑗 ) = 0 ) → ( 𝑋 ( .r ‘ 𝑃 ) ( 𝑖 1 𝑗 ) ) = ( 0g ‘ 𝑃 ) ) |
| 62 |
|
simpll |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ) |
| 63 |
62 24
|
jca |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ) |
| 64 |
63
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑖 ≠ 𝑗 ) ∧ ( 𝑖 𝑀 𝑗 ) = 0 ) → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ) |
| 65 |
14 3 5 2 4
|
mat2pmatvalel |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑖 ( 𝑇 ‘ 𝑀 ) 𝑗 ) = ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) ) |
| 66 |
64 65
|
syl |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑖 ≠ 𝑗 ) ∧ ( 𝑖 𝑀 𝑗 ) = 0 ) → ( 𝑖 ( 𝑇 ‘ 𝑀 ) 𝑗 ) = ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) ) |
| 67 |
61 66
|
oveq12d |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑖 ≠ 𝑗 ) ∧ ( 𝑖 𝑀 𝑗 ) = 0 ) → ( ( 𝑋 ( .r ‘ 𝑃 ) ( 𝑖 1 𝑗 ) ) − ( 𝑖 ( 𝑇 ‘ 𝑀 ) 𝑗 ) ) = ( ( 0g ‘ 𝑃 ) − ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) ) ) |
| 68 |
|
fveq2 |
⊢ ( ( 𝑖 𝑀 𝑗 ) = 0 → ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) = ( 𝑆 ‘ 0 ) ) |
| 69 |
68
|
adantl |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑖 ≠ 𝑗 ) ∧ ( 𝑖 𝑀 𝑗 ) = 0 ) → ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) = ( 𝑆 ‘ 0 ) ) |
| 70 |
2 4 7 46
|
ply1scl0 |
⊢ ( 𝑅 ∈ Ring → ( 𝑆 ‘ 0 ) = ( 0g ‘ 𝑃 ) ) |
| 71 |
70
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑆 ‘ 0 ) = ( 0g ‘ 𝑃 ) ) |
| 72 |
71
|
ad4antr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑖 ≠ 𝑗 ) ∧ ( 𝑖 𝑀 𝑗 ) = 0 ) → ( 𝑆 ‘ 0 ) = ( 0g ‘ 𝑃 ) ) |
| 73 |
69 72
|
eqtrd |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑖 ≠ 𝑗 ) ∧ ( 𝑖 𝑀 𝑗 ) = 0 ) → ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) = ( 0g ‘ 𝑃 ) ) |
| 74 |
73
|
oveq2d |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑖 ≠ 𝑗 ) ∧ ( 𝑖 𝑀 𝑗 ) = 0 ) → ( ( 0g ‘ 𝑃 ) − ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) ) = ( ( 0g ‘ 𝑃 ) − ( 0g ‘ 𝑃 ) ) ) |
| 75 |
|
ringgrp |
⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ Grp ) |
| 76 |
15 75
|
syl |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Grp ) |
| 77 |
30 46
|
grpidcl |
⊢ ( 𝑃 ∈ Grp → ( 0g ‘ 𝑃 ) ∈ ( Base ‘ 𝑃 ) ) |
| 78 |
76 77
|
jccir |
⊢ ( 𝑅 ∈ Ring → ( 𝑃 ∈ Grp ∧ ( 0g ‘ 𝑃 ) ∈ ( Base ‘ 𝑃 ) ) ) |
| 79 |
78
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑃 ∈ Grp ∧ ( 0g ‘ 𝑃 ) ∈ ( Base ‘ 𝑃 ) ) ) |
| 80 |
30 46 9
|
grpsubid |
⊢ ( ( 𝑃 ∈ Grp ∧ ( 0g ‘ 𝑃 ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 0g ‘ 𝑃 ) − ( 0g ‘ 𝑃 ) ) = ( 0g ‘ 𝑃 ) ) |
| 81 |
79 80
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ( 0g ‘ 𝑃 ) − ( 0g ‘ 𝑃 ) ) = ( 0g ‘ 𝑃 ) ) |
| 82 |
81
|
ad4antr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑖 ≠ 𝑗 ) ∧ ( 𝑖 𝑀 𝑗 ) = 0 ) → ( ( 0g ‘ 𝑃 ) − ( 0g ‘ 𝑃 ) ) = ( 0g ‘ 𝑃 ) ) |
| 83 |
67 74 82
|
3eqtrd |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑖 ≠ 𝑗 ) ∧ ( 𝑖 𝑀 𝑗 ) = 0 ) → ( ( 𝑋 ( .r ‘ 𝑃 ) ( 𝑖 1 𝑗 ) ) − ( 𝑖 ( 𝑇 ‘ 𝑀 ) 𝑗 ) ) = ( 0g ‘ 𝑃 ) ) |
| 84 |
28 44 83
|
3eqtrd |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑖 ≠ 𝑗 ) ∧ ( 𝑖 𝑀 𝑗 ) = 0 ) → ( 𝑖 ( ( 𝑋 · 1 ) 𝑍 ( 𝑇 ‘ 𝑀 ) ) 𝑗 ) = ( 0g ‘ 𝑃 ) ) |