| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chp0mat.c |  | 
						
							| 2 |  | chp0mat.p |  | 
						
							| 3 |  | chp0mat.a |  | 
						
							| 4 |  | chp0mat.x |  | 
						
							| 5 |  | chp0mat.g |  | 
						
							| 6 |  | chp0mat.m |  | 
						
							| 7 |  | chpscmat.d |  | 
						
							| 8 |  | chpscmat.s |  | 
						
							| 9 |  | chpscmat.m |  | 
						
							| 10 |  | simpll |  | 
						
							| 11 |  | simplr |  | 
						
							| 12 |  | elrabi |  | 
						
							| 13 | 12 7 | eleq2s |  | 
						
							| 14 | 13 | 3ad2ant1 |  | 
						
							| 15 | 14 | adantl |  | 
						
							| 16 |  | oveq |  | 
						
							| 17 | 16 | eqeq1d |  | 
						
							| 18 | 17 | 2ralbidv |  | 
						
							| 19 | 18 | rexbidv |  | 
						
							| 20 | 19 | elrab |  | 
						
							| 21 |  | ifnefalse |  | 
						
							| 22 | 21 | eqeq2d |  | 
						
							| 23 | 22 | biimpcd |  | 
						
							| 24 | 23 | a1i |  | 
						
							| 25 | 24 | ralimdva |  | 
						
							| 26 | 25 | ralimdva |  | 
						
							| 27 | 26 | ex |  | 
						
							| 28 | 27 | com23 |  | 
						
							| 29 | 28 | rexlimdva |  | 
						
							| 30 | 29 | imp |  | 
						
							| 31 | 20 30 | sylbi |  | 
						
							| 32 | 31 7 | eleq2s |  | 
						
							| 33 | 32 | 3ad2ant1 |  | 
						
							| 34 | 33 | impcom |  | 
						
							| 35 |  | eqid |  | 
						
							| 36 |  | eqid |  | 
						
							| 37 | 1 2 3 8 35 4 36 5 9 | chpdmat |  | 
						
							| 38 | 10 11 15 34 37 | syl31anc |  | 
						
							| 39 |  | id |  | 
						
							| 40 | 39 39 | oveq12d |  | 
						
							| 41 | 40 | eqeq1d |  | 
						
							| 42 | 41 | rspccv |  | 
						
							| 43 | 42 | 3ad2ant3 |  | 
						
							| 44 | 43 | adantl |  | 
						
							| 45 | 44 | imp |  | 
						
							| 46 | 45 | fveq2d |  | 
						
							| 47 | 46 | oveq2d |  | 
						
							| 48 | 47 | mpteq2dva |  | 
						
							| 49 | 48 | oveq2d |  | 
						
							| 50 | 2 | ply1crng |  | 
						
							| 51 | 5 | crngmgp |  | 
						
							| 52 |  | cmnmnd |  | 
						
							| 53 | 50 51 52 | 3syl |  | 
						
							| 54 | 53 | ad2antlr |  | 
						
							| 55 |  | crngring |  | 
						
							| 56 | 2 | ply1ring |  | 
						
							| 57 | 55 56 | syl |  | 
						
							| 58 |  | ringgrp |  | 
						
							| 59 | 57 58 | syl |  | 
						
							| 60 | 59 | ad2antlr |  | 
						
							| 61 |  | eqid |  | 
						
							| 62 | 4 2 61 | vr1cl |  | 
						
							| 63 | 55 62 | syl |  | 
						
							| 64 | 63 | ad2antlr |  | 
						
							| 65 |  | simpr |  | 
						
							| 66 |  | eqid |  | 
						
							| 67 | 57 | ad2antll |  | 
						
							| 68 | 67 | adantr |  | 
						
							| 69 | 2 | ply1lmod |  | 
						
							| 70 | 55 69 | syl |  | 
						
							| 71 | 70 | ad2antll |  | 
						
							| 72 | 71 | adantr |  | 
						
							| 73 |  | eqid |  | 
						
							| 74 | 8 66 68 72 73 61 | asclf |  | 
						
							| 75 | 13 | adantr |  | 
						
							| 76 | 75 | adantr |  | 
						
							| 77 |  | eqid |  | 
						
							| 78 | 3 77 | matecl |  | 
						
							| 79 | 65 65 76 78 | syl3anc |  | 
						
							| 80 | 2 | ply1sca |  | 
						
							| 81 | 80 | ad2antll |  | 
						
							| 82 | 81 | adantr |  | 
						
							| 83 | 82 | eqcomd |  | 
						
							| 84 | 83 | fveq2d |  | 
						
							| 85 | 79 84 | eleqtrrd |  | 
						
							| 86 | 74 85 | ffvelcdmd |  | 
						
							| 87 |  | fveq2 |  | 
						
							| 88 | 87 | eqcoms |  | 
						
							| 89 | 88 | eleq1d |  | 
						
							| 90 | 86 89 | syl5ibrcom |  | 
						
							| 91 | 90 | adantr |  | 
						
							| 92 |  | id |  | 
						
							| 93 | 92 92 | oveq12d |  | 
						
							| 94 | 93 | eqeq1d |  | 
						
							| 95 | 94 | imbi1d |  | 
						
							| 96 | 95 | adantl |  | 
						
							| 97 | 91 96 | mpbird |  | 
						
							| 98 | 65 97 | rspcimdv |  | 
						
							| 99 | 98 | ex |  | 
						
							| 100 | 99 | com23 |  | 
						
							| 101 | 100 | ex |  | 
						
							| 102 | 101 | com24 |  | 
						
							| 103 | 102 | 3imp |  | 
						
							| 104 | 103 | impcom |  | 
						
							| 105 | 61 9 | grpsubcl |  | 
						
							| 106 | 60 64 104 105 | syl3anc |  | 
						
							| 107 | 5 61 | mgpbas |  | 
						
							| 108 | 106 107 | eleqtrdi |  | 
						
							| 109 |  | eqid |  | 
						
							| 110 | 109 6 | gsumconst |  | 
						
							| 111 | 54 10 108 110 | syl3anc |  | 
						
							| 112 | 38 49 111 | 3eqtrd |  |