| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chp0mat.c | ⊢ 𝐶  =  ( 𝑁  CharPlyMat  𝑅 ) | 
						
							| 2 |  | chp0mat.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 3 |  | chp0mat.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 4 |  | chp0mat.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 5 |  | chp0mat.g | ⊢ 𝐺  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 6 |  | chp0mat.m | ⊢  ↑   =  ( .g ‘ 𝐺 ) | 
						
							| 7 |  | chpscmat.d | ⊢ 𝐷  =  { 𝑚  ∈  ( Base ‘ 𝐴 )  ∣  ∃ 𝑐  ∈  ( Base ‘ 𝑅 ) ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 𝑚 𝑗 )  =  if ( 𝑖  =  𝑗 ,  𝑐 ,  ( 0g ‘ 𝑅 ) ) } | 
						
							| 8 |  | chpscmat.s | ⊢ 𝑆  =  ( algSc ‘ 𝑃 ) | 
						
							| 9 |  | chpscmat.m | ⊢  −   =  ( -g ‘ 𝑃 ) | 
						
							| 10 |  | simpll | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐼  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  𝐸 ) )  →  𝑁  ∈  Fin ) | 
						
							| 11 |  | simplr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐼  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  𝐸 ) )  →  𝑅  ∈  CRing ) | 
						
							| 12 |  | elrabi | ⊢ ( 𝑀  ∈  { 𝑚  ∈  ( Base ‘ 𝐴 )  ∣  ∃ 𝑐  ∈  ( Base ‘ 𝑅 ) ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 𝑚 𝑗 )  =  if ( 𝑖  =  𝑗 ,  𝑐 ,  ( 0g ‘ 𝑅 ) ) }  →  𝑀  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 13 | 12 7 | eleq2s | ⊢ ( 𝑀  ∈  𝐷  →  𝑀  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 14 | 13 | 3ad2ant1 | ⊢ ( ( 𝑀  ∈  𝐷  ∧  𝐼  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  𝐸 )  →  𝑀  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐼  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  𝐸 ) )  →  𝑀  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 16 |  | oveq | ⊢ ( 𝑚  =  𝑀  →  ( 𝑖 𝑚 𝑗 )  =  ( 𝑖 𝑀 𝑗 ) ) | 
						
							| 17 | 16 | eqeq1d | ⊢ ( 𝑚  =  𝑀  →  ( ( 𝑖 𝑚 𝑗 )  =  if ( 𝑖  =  𝑗 ,  𝑐 ,  ( 0g ‘ 𝑅 ) )  ↔  ( 𝑖 𝑀 𝑗 )  =  if ( 𝑖  =  𝑗 ,  𝑐 ,  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 18 | 17 | 2ralbidv | ⊢ ( 𝑚  =  𝑀  →  ( ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 𝑚 𝑗 )  =  if ( 𝑖  =  𝑗 ,  𝑐 ,  ( 0g ‘ 𝑅 ) )  ↔  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 𝑀 𝑗 )  =  if ( 𝑖  =  𝑗 ,  𝑐 ,  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 19 | 18 | rexbidv | ⊢ ( 𝑚  =  𝑀  →  ( ∃ 𝑐  ∈  ( Base ‘ 𝑅 ) ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 𝑚 𝑗 )  =  if ( 𝑖  =  𝑗 ,  𝑐 ,  ( 0g ‘ 𝑅 ) )  ↔  ∃ 𝑐  ∈  ( Base ‘ 𝑅 ) ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 𝑀 𝑗 )  =  if ( 𝑖  =  𝑗 ,  𝑐 ,  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 20 | 19 | elrab | ⊢ ( 𝑀  ∈  { 𝑚  ∈  ( Base ‘ 𝐴 )  ∣  ∃ 𝑐  ∈  ( Base ‘ 𝑅 ) ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 𝑚 𝑗 )  =  if ( 𝑖  =  𝑗 ,  𝑐 ,  ( 0g ‘ 𝑅 ) ) }  ↔  ( 𝑀  ∈  ( Base ‘ 𝐴 )  ∧  ∃ 𝑐  ∈  ( Base ‘ 𝑅 ) ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 𝑀 𝑗 )  =  if ( 𝑖  =  𝑗 ,  𝑐 ,  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 21 |  | ifnefalse | ⊢ ( 𝑖  ≠  𝑗  →  if ( 𝑖  =  𝑗 ,  𝑐 ,  ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 22 | 21 | eqeq2d | ⊢ ( 𝑖  ≠  𝑗  →  ( ( 𝑖 𝑀 𝑗 )  =  if ( 𝑖  =  𝑗 ,  𝑐 ,  ( 0g ‘ 𝑅 ) )  ↔  ( 𝑖 𝑀 𝑗 )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 23 | 22 | biimpcd | ⊢ ( ( 𝑖 𝑀 𝑗 )  =  if ( 𝑖  =  𝑗 ,  𝑐 ,  ( 0g ‘ 𝑅 ) )  →  ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑀 𝑗 )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 24 | 23 | a1i | ⊢ ( ( ( ( ( 𝑀  ∈  ( Base ‘ 𝐴 )  ∧  𝑐  ∈  ( Base ‘ 𝑅 ) )  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing ) )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  →  ( ( 𝑖 𝑀 𝑗 )  =  if ( 𝑖  =  𝑗 ,  𝑐 ,  ( 0g ‘ 𝑅 ) )  →  ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑀 𝑗 )  =  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 25 | 24 | ralimdva | ⊢ ( ( ( ( 𝑀  ∈  ( Base ‘ 𝐴 )  ∧  𝑐  ∈  ( Base ‘ 𝑅 ) )  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing ) )  ∧  𝑖  ∈  𝑁 )  →  ( ∀ 𝑗  ∈  𝑁 ( 𝑖 𝑀 𝑗 )  =  if ( 𝑖  =  𝑗 ,  𝑐 ,  ( 0g ‘ 𝑅 ) )  →  ∀ 𝑗  ∈  𝑁 ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑀 𝑗 )  =  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 26 | 25 | ralimdva | ⊢ ( ( ( 𝑀  ∈  ( Base ‘ 𝐴 )  ∧  𝑐  ∈  ( Base ‘ 𝑅 ) )  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing ) )  →  ( ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 𝑀 𝑗 )  =  if ( 𝑖  =  𝑗 ,  𝑐 ,  ( 0g ‘ 𝑅 ) )  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑀 𝑗 )  =  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 27 | 26 | ex | ⊢ ( ( 𝑀  ∈  ( Base ‘ 𝐴 )  ∧  𝑐  ∈  ( Base ‘ 𝑅 ) )  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 𝑀 𝑗 )  =  if ( 𝑖  =  𝑗 ,  𝑐 ,  ( 0g ‘ 𝑅 ) )  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑀 𝑗 )  =  ( 0g ‘ 𝑅 ) ) ) ) ) | 
						
							| 28 | 27 | com23 | ⊢ ( ( 𝑀  ∈  ( Base ‘ 𝐴 )  ∧  𝑐  ∈  ( Base ‘ 𝑅 ) )  →  ( ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 𝑀 𝑗 )  =  if ( 𝑖  =  𝑗 ,  𝑐 ,  ( 0g ‘ 𝑅 ) )  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑀 𝑗 )  =  ( 0g ‘ 𝑅 ) ) ) ) ) | 
						
							| 29 | 28 | rexlimdva | ⊢ ( 𝑀  ∈  ( Base ‘ 𝐴 )  →  ( ∃ 𝑐  ∈  ( Base ‘ 𝑅 ) ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 𝑀 𝑗 )  =  if ( 𝑖  =  𝑗 ,  𝑐 ,  ( 0g ‘ 𝑅 ) )  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑀 𝑗 )  =  ( 0g ‘ 𝑅 ) ) ) ) ) | 
						
							| 30 | 29 | imp | ⊢ ( ( 𝑀  ∈  ( Base ‘ 𝐴 )  ∧  ∃ 𝑐  ∈  ( Base ‘ 𝑅 ) ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 𝑀 𝑗 )  =  if ( 𝑖  =  𝑗 ,  𝑐 ,  ( 0g ‘ 𝑅 ) ) )  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑀 𝑗 )  =  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 31 | 20 30 | sylbi | ⊢ ( 𝑀  ∈  { 𝑚  ∈  ( Base ‘ 𝐴 )  ∣  ∃ 𝑐  ∈  ( Base ‘ 𝑅 ) ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 𝑚 𝑗 )  =  if ( 𝑖  =  𝑗 ,  𝑐 ,  ( 0g ‘ 𝑅 ) ) }  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑀 𝑗 )  =  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 32 | 31 7 | eleq2s | ⊢ ( 𝑀  ∈  𝐷  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑀 𝑗 )  =  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 33 | 32 | 3ad2ant1 | ⊢ ( ( 𝑀  ∈  𝐷  ∧  𝐼  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  𝐸 )  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑀 𝑗 )  =  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 34 | 33 | impcom | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐼  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  𝐸 ) )  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑀 𝑗 )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 35 |  | eqid | ⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ 𝐴 ) | 
						
							| 36 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 37 | 1 2 3 8 35 4 36 5 9 | chpdmat | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  ( Base ‘ 𝐴 ) )  ∧  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑀 𝑗 )  =  ( 0g ‘ 𝑅 ) ) )  →  ( 𝐶 ‘ 𝑀 )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝑁  ↦  ( 𝑋  −  ( 𝑆 ‘ ( 𝑘 𝑀 𝑘 ) ) ) ) ) ) | 
						
							| 38 | 10 11 15 34 37 | syl31anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐼  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  𝐸 ) )  →  ( 𝐶 ‘ 𝑀 )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝑁  ↦  ( 𝑋  −  ( 𝑆 ‘ ( 𝑘 𝑀 𝑘 ) ) ) ) ) ) | 
						
							| 39 |  | id | ⊢ ( 𝑛  =  𝑘  →  𝑛  =  𝑘 ) | 
						
							| 40 | 39 39 | oveq12d | ⊢ ( 𝑛  =  𝑘  →  ( 𝑛 𝑀 𝑛 )  =  ( 𝑘 𝑀 𝑘 ) ) | 
						
							| 41 | 40 | eqeq1d | ⊢ ( 𝑛  =  𝑘  →  ( ( 𝑛 𝑀 𝑛 )  =  𝐸  ↔  ( 𝑘 𝑀 𝑘 )  =  𝐸 ) ) | 
						
							| 42 | 41 | rspccv | ⊢ ( ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  𝐸  →  ( 𝑘  ∈  𝑁  →  ( 𝑘 𝑀 𝑘 )  =  𝐸 ) ) | 
						
							| 43 | 42 | 3ad2ant3 | ⊢ ( ( 𝑀  ∈  𝐷  ∧  𝐼  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  𝐸 )  →  ( 𝑘  ∈  𝑁  →  ( 𝑘 𝑀 𝑘 )  =  𝐸 ) ) | 
						
							| 44 | 43 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐼  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  𝐸 ) )  →  ( 𝑘  ∈  𝑁  →  ( 𝑘 𝑀 𝑘 )  =  𝐸 ) ) | 
						
							| 45 | 44 | imp | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐼  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  𝐸 ) )  ∧  𝑘  ∈  𝑁 )  →  ( 𝑘 𝑀 𝑘 )  =  𝐸 ) | 
						
							| 46 | 45 | fveq2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐼  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  𝐸 ) )  ∧  𝑘  ∈  𝑁 )  →  ( 𝑆 ‘ ( 𝑘 𝑀 𝑘 ) )  =  ( 𝑆 ‘ 𝐸 ) ) | 
						
							| 47 | 46 | oveq2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐼  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  𝐸 ) )  ∧  𝑘  ∈  𝑁 )  →  ( 𝑋  −  ( 𝑆 ‘ ( 𝑘 𝑀 𝑘 ) ) )  =  ( 𝑋  −  ( 𝑆 ‘ 𝐸 ) ) ) | 
						
							| 48 | 47 | mpteq2dva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐼  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  𝐸 ) )  →  ( 𝑘  ∈  𝑁  ↦  ( 𝑋  −  ( 𝑆 ‘ ( 𝑘 𝑀 𝑘 ) ) ) )  =  ( 𝑘  ∈  𝑁  ↦  ( 𝑋  −  ( 𝑆 ‘ 𝐸 ) ) ) ) | 
						
							| 49 | 48 | oveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐼  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  𝐸 ) )  →  ( 𝐺  Σg  ( 𝑘  ∈  𝑁  ↦  ( 𝑋  −  ( 𝑆 ‘ ( 𝑘 𝑀 𝑘 ) ) ) ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝑁  ↦  ( 𝑋  −  ( 𝑆 ‘ 𝐸 ) ) ) ) ) | 
						
							| 50 | 2 | ply1crng | ⊢ ( 𝑅  ∈  CRing  →  𝑃  ∈  CRing ) | 
						
							| 51 | 5 | crngmgp | ⊢ ( 𝑃  ∈  CRing  →  𝐺  ∈  CMnd ) | 
						
							| 52 |  | cmnmnd | ⊢ ( 𝐺  ∈  CMnd  →  𝐺  ∈  Mnd ) | 
						
							| 53 | 50 51 52 | 3syl | ⊢ ( 𝑅  ∈  CRing  →  𝐺  ∈  Mnd ) | 
						
							| 54 | 53 | ad2antlr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐼  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  𝐸 ) )  →  𝐺  ∈  Mnd ) | 
						
							| 55 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 56 | 2 | ply1ring | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring ) | 
						
							| 57 | 55 56 | syl | ⊢ ( 𝑅  ∈  CRing  →  𝑃  ∈  Ring ) | 
						
							| 58 |  | ringgrp | ⊢ ( 𝑃  ∈  Ring  →  𝑃  ∈  Grp ) | 
						
							| 59 | 57 58 | syl | ⊢ ( 𝑅  ∈  CRing  →  𝑃  ∈  Grp ) | 
						
							| 60 | 59 | ad2antlr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐼  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  𝐸 ) )  →  𝑃  ∈  Grp ) | 
						
							| 61 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 62 | 4 2 61 | vr1cl | ⊢ ( 𝑅  ∈  Ring  →  𝑋  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 63 | 55 62 | syl | ⊢ ( 𝑅  ∈  CRing  →  𝑋  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 64 | 63 | ad2antlr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐼  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  𝐸 ) )  →  𝑋  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 65 |  | simpr | ⊢ ( ( ( 𝑀  ∈  𝐷  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing ) )  ∧  𝐼  ∈  𝑁 )  →  𝐼  ∈  𝑁 ) | 
						
							| 66 |  | eqid | ⊢ ( Scalar ‘ 𝑃 )  =  ( Scalar ‘ 𝑃 ) | 
						
							| 67 | 57 | ad2antll | ⊢ ( ( 𝑀  ∈  𝐷  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing ) )  →  𝑃  ∈  Ring ) | 
						
							| 68 | 67 | adantr | ⊢ ( ( ( 𝑀  ∈  𝐷  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing ) )  ∧  𝐼  ∈  𝑁 )  →  𝑃  ∈  Ring ) | 
						
							| 69 | 2 | ply1lmod | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  LMod ) | 
						
							| 70 | 55 69 | syl | ⊢ ( 𝑅  ∈  CRing  →  𝑃  ∈  LMod ) | 
						
							| 71 | 70 | ad2antll | ⊢ ( ( 𝑀  ∈  𝐷  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing ) )  →  𝑃  ∈  LMod ) | 
						
							| 72 | 71 | adantr | ⊢ ( ( ( 𝑀  ∈  𝐷  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing ) )  ∧  𝐼  ∈  𝑁 )  →  𝑃  ∈  LMod ) | 
						
							| 73 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) )  =  ( Base ‘ ( Scalar ‘ 𝑃 ) ) | 
						
							| 74 | 8 66 68 72 73 61 | asclf | ⊢ ( ( ( 𝑀  ∈  𝐷  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing ) )  ∧  𝐼  ∈  𝑁 )  →  𝑆 : ( Base ‘ ( Scalar ‘ 𝑃 ) ) ⟶ ( Base ‘ 𝑃 ) ) | 
						
							| 75 | 13 | adantr | ⊢ ( ( 𝑀  ∈  𝐷  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing ) )  →  𝑀  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 76 | 75 | adantr | ⊢ ( ( ( 𝑀  ∈  𝐷  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing ) )  ∧  𝐼  ∈  𝑁 )  →  𝑀  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 77 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 78 | 3 77 | matecl | ⊢ ( ( 𝐼  ∈  𝑁  ∧  𝐼  ∈  𝑁  ∧  𝑀  ∈  ( Base ‘ 𝐴 ) )  →  ( 𝐼 𝑀 𝐼 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 79 | 65 65 76 78 | syl3anc | ⊢ ( ( ( 𝑀  ∈  𝐷  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing ) )  ∧  𝐼  ∈  𝑁 )  →  ( 𝐼 𝑀 𝐼 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 80 | 2 | ply1sca | ⊢ ( 𝑅  ∈  CRing  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 81 | 80 | ad2antll | ⊢ ( ( 𝑀  ∈  𝐷  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing ) )  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 82 | 81 | adantr | ⊢ ( ( ( 𝑀  ∈  𝐷  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing ) )  ∧  𝐼  ∈  𝑁 )  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 83 | 82 | eqcomd | ⊢ ( ( ( 𝑀  ∈  𝐷  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing ) )  ∧  𝐼  ∈  𝑁 )  →  ( Scalar ‘ 𝑃 )  =  𝑅 ) | 
						
							| 84 | 83 | fveq2d | ⊢ ( ( ( 𝑀  ∈  𝐷  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing ) )  ∧  𝐼  ∈  𝑁 )  →  ( Base ‘ ( Scalar ‘ 𝑃 ) )  =  ( Base ‘ 𝑅 ) ) | 
						
							| 85 | 79 84 | eleqtrrd | ⊢ ( ( ( 𝑀  ∈  𝐷  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing ) )  ∧  𝐼  ∈  𝑁 )  →  ( 𝐼 𝑀 𝐼 )  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 86 | 74 85 | ffvelcdmd | ⊢ ( ( ( 𝑀  ∈  𝐷  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing ) )  ∧  𝐼  ∈  𝑁 )  →  ( 𝑆 ‘ ( 𝐼 𝑀 𝐼 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 87 |  | fveq2 | ⊢ ( 𝐸  =  ( 𝐼 𝑀 𝐼 )  →  ( 𝑆 ‘ 𝐸 )  =  ( 𝑆 ‘ ( 𝐼 𝑀 𝐼 ) ) ) | 
						
							| 88 | 87 | eqcoms | ⊢ ( ( 𝐼 𝑀 𝐼 )  =  𝐸  →  ( 𝑆 ‘ 𝐸 )  =  ( 𝑆 ‘ ( 𝐼 𝑀 𝐼 ) ) ) | 
						
							| 89 | 88 | eleq1d | ⊢ ( ( 𝐼 𝑀 𝐼 )  =  𝐸  →  ( ( 𝑆 ‘ 𝐸 )  ∈  ( Base ‘ 𝑃 )  ↔  ( 𝑆 ‘ ( 𝐼 𝑀 𝐼 ) )  ∈  ( Base ‘ 𝑃 ) ) ) | 
						
							| 90 | 86 89 | syl5ibrcom | ⊢ ( ( ( 𝑀  ∈  𝐷  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing ) )  ∧  𝐼  ∈  𝑁 )  →  ( ( 𝐼 𝑀 𝐼 )  =  𝐸  →  ( 𝑆 ‘ 𝐸 )  ∈  ( Base ‘ 𝑃 ) ) ) | 
						
							| 91 | 90 | adantr | ⊢ ( ( ( ( 𝑀  ∈  𝐷  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing ) )  ∧  𝐼  ∈  𝑁 )  ∧  𝑛  =  𝐼 )  →  ( ( 𝐼 𝑀 𝐼 )  =  𝐸  →  ( 𝑆 ‘ 𝐸 )  ∈  ( Base ‘ 𝑃 ) ) ) | 
						
							| 92 |  | id | ⊢ ( 𝑛  =  𝐼  →  𝑛  =  𝐼 ) | 
						
							| 93 | 92 92 | oveq12d | ⊢ ( 𝑛  =  𝐼  →  ( 𝑛 𝑀 𝑛 )  =  ( 𝐼 𝑀 𝐼 ) ) | 
						
							| 94 | 93 | eqeq1d | ⊢ ( 𝑛  =  𝐼  →  ( ( 𝑛 𝑀 𝑛 )  =  𝐸  ↔  ( 𝐼 𝑀 𝐼 )  =  𝐸 ) ) | 
						
							| 95 | 94 | imbi1d | ⊢ ( 𝑛  =  𝐼  →  ( ( ( 𝑛 𝑀 𝑛 )  =  𝐸  →  ( 𝑆 ‘ 𝐸 )  ∈  ( Base ‘ 𝑃 ) )  ↔  ( ( 𝐼 𝑀 𝐼 )  =  𝐸  →  ( 𝑆 ‘ 𝐸 )  ∈  ( Base ‘ 𝑃 ) ) ) ) | 
						
							| 96 | 95 | adantl | ⊢ ( ( ( ( 𝑀  ∈  𝐷  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing ) )  ∧  𝐼  ∈  𝑁 )  ∧  𝑛  =  𝐼 )  →  ( ( ( 𝑛 𝑀 𝑛 )  =  𝐸  →  ( 𝑆 ‘ 𝐸 )  ∈  ( Base ‘ 𝑃 ) )  ↔  ( ( 𝐼 𝑀 𝐼 )  =  𝐸  →  ( 𝑆 ‘ 𝐸 )  ∈  ( Base ‘ 𝑃 ) ) ) ) | 
						
							| 97 | 91 96 | mpbird | ⊢ ( ( ( ( 𝑀  ∈  𝐷  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing ) )  ∧  𝐼  ∈  𝑁 )  ∧  𝑛  =  𝐼 )  →  ( ( 𝑛 𝑀 𝑛 )  =  𝐸  →  ( 𝑆 ‘ 𝐸 )  ∈  ( Base ‘ 𝑃 ) ) ) | 
						
							| 98 | 65 97 | rspcimdv | ⊢ ( ( ( 𝑀  ∈  𝐷  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing ) )  ∧  𝐼  ∈  𝑁 )  →  ( ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  𝐸  →  ( 𝑆 ‘ 𝐸 )  ∈  ( Base ‘ 𝑃 ) ) ) | 
						
							| 99 | 98 | ex | ⊢ ( ( 𝑀  ∈  𝐷  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing ) )  →  ( 𝐼  ∈  𝑁  →  ( ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  𝐸  →  ( 𝑆 ‘ 𝐸 )  ∈  ( Base ‘ 𝑃 ) ) ) ) | 
						
							| 100 | 99 | com23 | ⊢ ( ( 𝑀  ∈  𝐷  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing ) )  →  ( ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  𝐸  →  ( 𝐼  ∈  𝑁  →  ( 𝑆 ‘ 𝐸 )  ∈  ( Base ‘ 𝑃 ) ) ) ) | 
						
							| 101 | 100 | ex | ⊢ ( 𝑀  ∈  𝐷  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  𝐸  →  ( 𝐼  ∈  𝑁  →  ( 𝑆 ‘ 𝐸 )  ∈  ( Base ‘ 𝑃 ) ) ) ) ) | 
						
							| 102 | 101 | com24 | ⊢ ( 𝑀  ∈  𝐷  →  ( 𝐼  ∈  𝑁  →  ( ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  𝐸  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑆 ‘ 𝐸 )  ∈  ( Base ‘ 𝑃 ) ) ) ) ) | 
						
							| 103 | 102 | 3imp | ⊢ ( ( 𝑀  ∈  𝐷  ∧  𝐼  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  𝐸 )  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑆 ‘ 𝐸 )  ∈  ( Base ‘ 𝑃 ) ) ) | 
						
							| 104 | 103 | impcom | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐼  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  𝐸 ) )  →  ( 𝑆 ‘ 𝐸 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 105 | 61 9 | grpsubcl | ⊢ ( ( 𝑃  ∈  Grp  ∧  𝑋  ∈  ( Base ‘ 𝑃 )  ∧  ( 𝑆 ‘ 𝐸 )  ∈  ( Base ‘ 𝑃 ) )  →  ( 𝑋  −  ( 𝑆 ‘ 𝐸 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 106 | 60 64 104 105 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐼  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  𝐸 ) )  →  ( 𝑋  −  ( 𝑆 ‘ 𝐸 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 107 | 5 61 | mgpbas | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝐺 ) | 
						
							| 108 | 106 107 | eleqtrdi | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐼  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  𝐸 ) )  →  ( 𝑋  −  ( 𝑆 ‘ 𝐸 ) )  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 109 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 110 | 109 6 | gsumconst | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑁  ∈  Fin  ∧  ( 𝑋  −  ( 𝑆 ‘ 𝐸 ) )  ∈  ( Base ‘ 𝐺 ) )  →  ( 𝐺  Σg  ( 𝑘  ∈  𝑁  ↦  ( 𝑋  −  ( 𝑆 ‘ 𝐸 ) ) ) )  =  ( ( ♯ ‘ 𝑁 )  ↑  ( 𝑋  −  ( 𝑆 ‘ 𝐸 ) ) ) ) | 
						
							| 111 | 54 10 108 110 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐼  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  𝐸 ) )  →  ( 𝐺  Σg  ( 𝑘  ∈  𝑁  ↦  ( 𝑋  −  ( 𝑆 ‘ 𝐸 ) ) ) )  =  ( ( ♯ ‘ 𝑁 )  ↑  ( 𝑋  −  ( 𝑆 ‘ 𝐸 ) ) ) ) | 
						
							| 112 | 38 49 111 | 3eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐷  ∧  𝐼  ∈  𝑁  ∧  ∀ 𝑛  ∈  𝑁 ( 𝑛 𝑀 𝑛 )  =  𝐸 ) )  →  ( 𝐶 ‘ 𝑀 )  =  ( ( ♯ ‘ 𝑁 )  ↑  ( 𝑋  −  ( 𝑆 ‘ 𝐸 ) ) ) ) |