| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chpdmat.c |  | 
						
							| 2 |  | chpdmat.p |  | 
						
							| 3 |  | chpdmat.a |  | 
						
							| 4 |  | chpdmat.s |  | 
						
							| 5 |  | chpdmat.b |  | 
						
							| 6 |  | chpdmat.x |  | 
						
							| 7 |  | chpdmat.0 |  | 
						
							| 8 |  | chpdmat.g |  | 
						
							| 9 |  | chpdmat.m |  | 
						
							| 10 |  | chpdmatlem.q |  | 
						
							| 11 |  | chpdmatlem.1 |  | 
						
							| 12 |  | chpdmatlem.m |  | 
						
							| 13 |  | chpdmatlem.z |  | 
						
							| 14 |  | chpdmatlem.t |  | 
						
							| 15 | 2 | ply1ring |  | 
						
							| 16 | 15 | 3ad2ant2 |  | 
						
							| 17 | 16 | adantr |  | 
						
							| 18 | 1 2 3 4 5 6 7 8 9 10 11 12 | chpdmatlem0 |  | 
						
							| 19 | 18 | 3adant3 |  | 
						
							| 20 | 14 3 5 2 10 | mat2pmatbas |  | 
						
							| 21 | 19 20 | jca |  | 
						
							| 22 | 21 | adantr |  | 
						
							| 23 |  | simpr |  | 
						
							| 24 |  | eqid |  | 
						
							| 25 | 10 24 13 9 | matsubgcell |  | 
						
							| 26 | 17 22 23 23 25 | syl112anc |  | 
						
							| 27 |  | eqid |  | 
						
							| 28 | 6 2 27 | vr1cl |  | 
						
							| 29 | 28 | adantl |  | 
						
							| 30 | 2 10 | pmatring |  | 
						
							| 31 | 24 11 | ringidcl |  | 
						
							| 32 | 30 31 | syl |  | 
						
							| 33 | 29 32 | jca |  | 
						
							| 34 | 33 | 3adant3 |  | 
						
							| 35 | 34 | adantr |  | 
						
							| 36 |  | eqid |  | 
						
							| 37 | 10 24 27 12 36 | matvscacell |  | 
						
							| 38 | 17 35 23 23 37 | syl112anc |  | 
						
							| 39 |  | eqid |  | 
						
							| 40 |  | eqid |  | 
						
							| 41 |  | simpl1 |  | 
						
							| 42 | 10 39 40 41 17 23 23 11 | mat1ov |  | 
						
							| 43 |  | eqid |  | 
						
							| 44 | 43 | iftruei |  | 
						
							| 45 | 42 44 | eqtrdi |  | 
						
							| 46 | 45 | oveq2d |  | 
						
							| 47 | 15 28 | jca |  | 
						
							| 48 | 47 | 3ad2ant2 |  | 
						
							| 49 | 27 36 39 | ringridm |  | 
						
							| 50 | 48 49 | syl |  | 
						
							| 51 | 50 | adantr |  | 
						
							| 52 | 38 46 51 | 3eqtrd |  | 
						
							| 53 | 14 3 5 2 4 | mat2pmatvalel |  | 
						
							| 54 | 53 | anabsan2 |  | 
						
							| 55 | 52 54 | oveq12d |  | 
						
							| 56 | 26 55 | eqtrd |  |