| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chpdmat.c |  |-  C = ( N CharPlyMat R ) | 
						
							| 2 |  | chpdmat.p |  |-  P = ( Poly1 ` R ) | 
						
							| 3 |  | chpdmat.a |  |-  A = ( N Mat R ) | 
						
							| 4 |  | chpdmat.s |  |-  S = ( algSc ` P ) | 
						
							| 5 |  | chpdmat.b |  |-  B = ( Base ` A ) | 
						
							| 6 |  | chpdmat.x |  |-  X = ( var1 ` R ) | 
						
							| 7 |  | chpdmat.0 |  |-  .0. = ( 0g ` R ) | 
						
							| 8 |  | chpdmat.g |  |-  G = ( mulGrp ` P ) | 
						
							| 9 |  | chpdmat.m |  |-  .- = ( -g ` P ) | 
						
							| 10 |  | chpdmatlem.q |  |-  Q = ( N Mat P ) | 
						
							| 11 |  | chpdmatlem.1 |  |-  .1. = ( 1r ` Q ) | 
						
							| 12 |  | chpdmatlem.m |  |-  .x. = ( .s ` Q ) | 
						
							| 13 |  | chpdmatlem.z |  |-  Z = ( -g ` Q ) | 
						
							| 14 |  | chpdmatlem.t |  |-  T = ( N matToPolyMat R ) | 
						
							| 15 | 2 | ply1ring |  |-  ( R e. Ring -> P e. Ring ) | 
						
							| 16 | 15 | 3ad2ant2 |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> P e. Ring ) | 
						
							| 17 | 16 | adantr |  |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. N ) -> P e. Ring ) | 
						
							| 18 | 1 2 3 4 5 6 7 8 9 10 11 12 | chpdmatlem0 |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( X .x. .1. ) e. ( Base ` Q ) ) | 
						
							| 19 | 18 | 3adant3 |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( X .x. .1. ) e. ( Base ` Q ) ) | 
						
							| 20 | 14 3 5 2 10 | mat2pmatbas |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( T ` M ) e. ( Base ` Q ) ) | 
						
							| 21 | 19 20 | jca |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( ( X .x. .1. ) e. ( Base ` Q ) /\ ( T ` M ) e. ( Base ` Q ) ) ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. N ) -> ( ( X .x. .1. ) e. ( Base ` Q ) /\ ( T ` M ) e. ( Base ` Q ) ) ) | 
						
							| 23 |  | simpr |  |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. N ) -> K e. N ) | 
						
							| 24 |  | eqid |  |-  ( Base ` Q ) = ( Base ` Q ) | 
						
							| 25 | 10 24 13 9 | matsubgcell |  |-  ( ( P e. Ring /\ ( ( X .x. .1. ) e. ( Base ` Q ) /\ ( T ` M ) e. ( Base ` Q ) ) /\ ( K e. N /\ K e. N ) ) -> ( K ( ( X .x. .1. ) Z ( T ` M ) ) K ) = ( ( K ( X .x. .1. ) K ) .- ( K ( T ` M ) K ) ) ) | 
						
							| 26 | 17 22 23 23 25 | syl112anc |  |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. N ) -> ( K ( ( X .x. .1. ) Z ( T ` M ) ) K ) = ( ( K ( X .x. .1. ) K ) .- ( K ( T ` M ) K ) ) ) | 
						
							| 27 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 28 | 6 2 27 | vr1cl |  |-  ( R e. Ring -> X e. ( Base ` P ) ) | 
						
							| 29 | 28 | adantl |  |-  ( ( N e. Fin /\ R e. Ring ) -> X e. ( Base ` P ) ) | 
						
							| 30 | 2 10 | pmatring |  |-  ( ( N e. Fin /\ R e. Ring ) -> Q e. Ring ) | 
						
							| 31 | 24 11 | ringidcl |  |-  ( Q e. Ring -> .1. e. ( Base ` Q ) ) | 
						
							| 32 | 30 31 | syl |  |-  ( ( N e. Fin /\ R e. Ring ) -> .1. e. ( Base ` Q ) ) | 
						
							| 33 | 29 32 | jca |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( X e. ( Base ` P ) /\ .1. e. ( Base ` Q ) ) ) | 
						
							| 34 | 33 | 3adant3 |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( X e. ( Base ` P ) /\ .1. e. ( Base ` Q ) ) ) | 
						
							| 35 | 34 | adantr |  |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. N ) -> ( X e. ( Base ` P ) /\ .1. e. ( Base ` Q ) ) ) | 
						
							| 36 |  | eqid |  |-  ( .r ` P ) = ( .r ` P ) | 
						
							| 37 | 10 24 27 12 36 | matvscacell |  |-  ( ( P e. Ring /\ ( X e. ( Base ` P ) /\ .1. e. ( Base ` Q ) ) /\ ( K e. N /\ K e. N ) ) -> ( K ( X .x. .1. ) K ) = ( X ( .r ` P ) ( K .1. K ) ) ) | 
						
							| 38 | 17 35 23 23 37 | syl112anc |  |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. N ) -> ( K ( X .x. .1. ) K ) = ( X ( .r ` P ) ( K .1. K ) ) ) | 
						
							| 39 |  | eqid |  |-  ( 1r ` P ) = ( 1r ` P ) | 
						
							| 40 |  | eqid |  |-  ( 0g ` P ) = ( 0g ` P ) | 
						
							| 41 |  | simpl1 |  |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. N ) -> N e. Fin ) | 
						
							| 42 | 10 39 40 41 17 23 23 11 | mat1ov |  |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. N ) -> ( K .1. K ) = if ( K = K , ( 1r ` P ) , ( 0g ` P ) ) ) | 
						
							| 43 |  | eqid |  |-  K = K | 
						
							| 44 | 43 | iftruei |  |-  if ( K = K , ( 1r ` P ) , ( 0g ` P ) ) = ( 1r ` P ) | 
						
							| 45 | 42 44 | eqtrdi |  |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. N ) -> ( K .1. K ) = ( 1r ` P ) ) | 
						
							| 46 | 45 | oveq2d |  |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. N ) -> ( X ( .r ` P ) ( K .1. K ) ) = ( X ( .r ` P ) ( 1r ` P ) ) ) | 
						
							| 47 | 15 28 | jca |  |-  ( R e. Ring -> ( P e. Ring /\ X e. ( Base ` P ) ) ) | 
						
							| 48 | 47 | 3ad2ant2 |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( P e. Ring /\ X e. ( Base ` P ) ) ) | 
						
							| 49 | 27 36 39 | ringridm |  |-  ( ( P e. Ring /\ X e. ( Base ` P ) ) -> ( X ( .r ` P ) ( 1r ` P ) ) = X ) | 
						
							| 50 | 48 49 | syl |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( X ( .r ` P ) ( 1r ` P ) ) = X ) | 
						
							| 51 | 50 | adantr |  |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. N ) -> ( X ( .r ` P ) ( 1r ` P ) ) = X ) | 
						
							| 52 | 38 46 51 | 3eqtrd |  |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. N ) -> ( K ( X .x. .1. ) K ) = X ) | 
						
							| 53 | 14 3 5 2 4 | mat2pmatvalel |  |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ ( K e. N /\ K e. N ) ) -> ( K ( T ` M ) K ) = ( S ` ( K M K ) ) ) | 
						
							| 54 | 53 | anabsan2 |  |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. N ) -> ( K ( T ` M ) K ) = ( S ` ( K M K ) ) ) | 
						
							| 55 | 52 54 | oveq12d |  |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. N ) -> ( ( K ( X .x. .1. ) K ) .- ( K ( T ` M ) K ) ) = ( X .- ( S ` ( K M K ) ) ) ) | 
						
							| 56 | 26 55 | eqtrd |  |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. N ) -> ( K ( ( X .x. .1. ) Z ( T ` M ) ) K ) = ( X .- ( S ` ( K M K ) ) ) ) |