| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clnbgr3stgrgrlim.n |
⊢ 𝑁 ∈ ℕ0 |
| 2 |
|
clnbgr3stgrgrlim.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 3 |
|
clnbgr3stgrgrlim.w |
⊢ 𝑊 = ( Vtx ‘ 𝐻 ) |
| 4 |
|
simp13 |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ∧ ∀ 𝑦 ∈ 𝑊 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx 𝑦 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) → 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) |
| 5 |
|
usgruhgr |
⊢ ( 𝐻 ∈ USGraph → 𝐻 ∈ UHGraph ) |
| 6 |
5
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) → 𝐻 ∈ UHGraph ) |
| 7 |
6
|
adantr |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝑊 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx 𝑦 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) → 𝐻 ∈ UHGraph ) |
| 8 |
3
|
clnbgrssvtx |
⊢ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ⊆ 𝑊 |
| 9 |
8
|
a1i |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝑊 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx 𝑦 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ⊆ 𝑊 ) |
| 10 |
3
|
isubgruhgr |
⊢ ( ( 𝐻 ∈ UHGraph ∧ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ⊆ 𝑊 ) → ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ∈ UHGraph ) |
| 11 |
7 9 10
|
syl2an2r |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝑊 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx 𝑦 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ∈ UHGraph ) |
| 12 |
|
f1of |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → 𝐹 : 𝑉 ⟶ 𝑊 ) |
| 13 |
12
|
3ad2ant3 |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) → 𝐹 : 𝑉 ⟶ 𝑊 ) |
| 14 |
13
|
ffvelcdmda |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑊 ) |
| 15 |
|
oveq2 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( 𝐻 ClNeighbVtx 𝑦 ) = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) |
| 16 |
15
|
oveq2d |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx 𝑦 ) ) = ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 17 |
16
|
breq1d |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx 𝑦 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ↔ ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) ) |
| 18 |
17
|
rspcv |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝑊 → ( ∀ 𝑦 ∈ 𝑊 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx 𝑦 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) → ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) ) |
| 19 |
14 18
|
syl |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑥 ∈ 𝑉 ) → ( ∀ 𝑦 ∈ 𝑊 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx 𝑦 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) → ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) ) |
| 20 |
19
|
impancom |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝑊 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx 𝑦 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) → ( 𝑥 ∈ 𝑉 → ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) ) |
| 21 |
20
|
imp |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝑊 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx 𝑦 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) |
| 22 |
|
gricsym |
⊢ ( ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ∈ UHGraph → ( ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) → ( StarGr ‘ 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 23 |
11 21 22
|
sylc |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝑊 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx 𝑦 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( StarGr ‘ 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 24 |
23
|
anim1ci |
⊢ ( ( ( ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝑊 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx 𝑦 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) → ( ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ∧ ( StarGr ‘ 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 25 |
|
grictr |
⊢ ( ( ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ∧ ( StarGr ‘ 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ) → ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 26 |
24 25
|
syl |
⊢ ( ( ( ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝑊 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx 𝑦 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) → ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 27 |
26
|
ex |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝑊 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx 𝑦 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) → ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 28 |
27
|
ralimdva |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝑊 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx 𝑦 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) → ( ∀ 𝑥 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) → ∀ 𝑥 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 29 |
28
|
ex |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) → ( ∀ 𝑦 ∈ 𝑊 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx 𝑦 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) → ( ∀ 𝑥 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) → ∀ 𝑥 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ) ) ) |
| 30 |
29
|
com23 |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) → ( ∀ 𝑥 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) → ( ∀ 𝑦 ∈ 𝑊 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx 𝑦 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) → ∀ 𝑥 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ) ) ) |
| 31 |
30
|
3imp |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ∧ ∀ 𝑦 ∈ 𝑊 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx 𝑦 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) → ∀ 𝑥 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 32 |
2
|
fvexi |
⊢ 𝑉 ∈ V |
| 33 |
32
|
a1i |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → 𝑉 ∈ V ) |
| 34 |
12 33
|
fexd |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → 𝐹 ∈ V ) |
| 35 |
34
|
3anim3i |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) → ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 ∈ V ) ) |
| 36 |
35
|
3ad2ant1 |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ∧ ∀ 𝑦 ∈ 𝑊 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx 𝑦 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) → ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 ∈ V ) ) |
| 37 |
2 3
|
isgrlim |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 ∈ V ) → ( 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ↔ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ) ) ) |
| 38 |
36 37
|
syl |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ∧ ∀ 𝑦 ∈ 𝑊 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx 𝑦 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) → ( 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ↔ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ) ) ) |
| 39 |
4 31 38
|
mpbir2and |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ∧ ∀ 𝑦 ∈ 𝑊 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx 𝑦 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) → 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) |