| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clnbgrval.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
clnbgrval.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
| 3 |
|
df-clnbgr |
⊢ ClNeighbVtx = ( 𝑔 ∈ V , 𝑣 ∈ ( Vtx ‘ 𝑔 ) ↦ ( { 𝑣 } ∪ { 𝑛 ∈ ( Vtx ‘ 𝑔 ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝑔 ) { 𝑣 , 𝑛 } ⊆ 𝑒 } ) ) |
| 4 |
1
|
1vgrex |
⊢ ( 𝑁 ∈ 𝑉 → 𝐺 ∈ V ) |
| 5 |
|
fveq2 |
⊢ ( 𝐺 = 𝑔 → ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝑔 ) ) |
| 6 |
5
|
eqcoms |
⊢ ( 𝑔 = 𝐺 → ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝑔 ) ) |
| 7 |
1 6
|
eqtrid |
⊢ ( 𝑔 = 𝐺 → 𝑉 = ( Vtx ‘ 𝑔 ) ) |
| 8 |
7
|
eleq2d |
⊢ ( 𝑔 = 𝐺 → ( 𝑁 ∈ 𝑉 ↔ 𝑁 ∈ ( Vtx ‘ 𝑔 ) ) ) |
| 9 |
8
|
biimpac |
⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝑔 = 𝐺 ) → 𝑁 ∈ ( Vtx ‘ 𝑔 ) ) |
| 10 |
|
vsnex |
⊢ { 𝑣 } ∈ V |
| 11 |
10
|
a1i |
⊢ ( ( 𝑁 ∈ 𝑉 ∧ ( 𝑔 = 𝐺 ∧ 𝑣 = 𝑁 ) ) → { 𝑣 } ∈ V ) |
| 12 |
|
fvex |
⊢ ( Vtx ‘ 𝑔 ) ∈ V |
| 13 |
|
rabexg |
⊢ ( ( Vtx ‘ 𝑔 ) ∈ V → { 𝑛 ∈ ( Vtx ‘ 𝑔 ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝑔 ) { 𝑣 , 𝑛 } ⊆ 𝑒 } ∈ V ) |
| 14 |
12 13
|
mp1i |
⊢ ( ( 𝑁 ∈ 𝑉 ∧ ( 𝑔 = 𝐺 ∧ 𝑣 = 𝑁 ) ) → { 𝑛 ∈ ( Vtx ‘ 𝑔 ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝑔 ) { 𝑣 , 𝑛 } ⊆ 𝑒 } ∈ V ) |
| 15 |
11 14
|
unexd |
⊢ ( ( 𝑁 ∈ 𝑉 ∧ ( 𝑔 = 𝐺 ∧ 𝑣 = 𝑁 ) ) → ( { 𝑣 } ∪ { 𝑛 ∈ ( Vtx ‘ 𝑔 ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝑔 ) { 𝑣 , 𝑛 } ⊆ 𝑒 } ) ∈ V ) |
| 16 |
|
sneq |
⊢ ( 𝑣 = 𝑁 → { 𝑣 } = { 𝑁 } ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝑔 = 𝐺 ∧ 𝑣 = 𝑁 ) → { 𝑣 } = { 𝑁 } ) |
| 18 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ) |
| 19 |
18 1
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( Vtx ‘ 𝑔 ) = 𝑉 ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝑔 = 𝐺 ∧ 𝑣 = 𝑁 ) → ( Vtx ‘ 𝑔 ) = 𝑉 ) |
| 21 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( Edg ‘ 𝑔 ) = ( Edg ‘ 𝐺 ) ) |
| 22 |
21 2
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( Edg ‘ 𝑔 ) = 𝐸 ) |
| 23 |
22
|
adantr |
⊢ ( ( 𝑔 = 𝐺 ∧ 𝑣 = 𝑁 ) → ( Edg ‘ 𝑔 ) = 𝐸 ) |
| 24 |
|
preq1 |
⊢ ( 𝑣 = 𝑁 → { 𝑣 , 𝑛 } = { 𝑁 , 𝑛 } ) |
| 25 |
24
|
sseq1d |
⊢ ( 𝑣 = 𝑁 → ( { 𝑣 , 𝑛 } ⊆ 𝑒 ↔ { 𝑁 , 𝑛 } ⊆ 𝑒 ) ) |
| 26 |
25
|
adantl |
⊢ ( ( 𝑔 = 𝐺 ∧ 𝑣 = 𝑁 ) → ( { 𝑣 , 𝑛 } ⊆ 𝑒 ↔ { 𝑁 , 𝑛 } ⊆ 𝑒 ) ) |
| 27 |
23 26
|
rexeqbidv |
⊢ ( ( 𝑔 = 𝐺 ∧ 𝑣 = 𝑁 ) → ( ∃ 𝑒 ∈ ( Edg ‘ 𝑔 ) { 𝑣 , 𝑛 } ⊆ 𝑒 ↔ ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 ) ) |
| 28 |
20 27
|
rabeqbidv |
⊢ ( ( 𝑔 = 𝐺 ∧ 𝑣 = 𝑁 ) → { 𝑛 ∈ ( Vtx ‘ 𝑔 ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝑔 ) { 𝑣 , 𝑛 } ⊆ 𝑒 } = { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 } ) |
| 29 |
17 28
|
uneq12d |
⊢ ( ( 𝑔 = 𝐺 ∧ 𝑣 = 𝑁 ) → ( { 𝑣 } ∪ { 𝑛 ∈ ( Vtx ‘ 𝑔 ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝑔 ) { 𝑣 , 𝑛 } ⊆ 𝑒 } ) = ( { 𝑁 } ∪ { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 } ) ) |
| 30 |
29
|
adantl |
⊢ ( ( 𝑁 ∈ 𝑉 ∧ ( 𝑔 = 𝐺 ∧ 𝑣 = 𝑁 ) ) → ( { 𝑣 } ∪ { 𝑛 ∈ ( Vtx ‘ 𝑔 ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝑔 ) { 𝑣 , 𝑛 } ⊆ 𝑒 } ) = ( { 𝑁 } ∪ { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 } ) ) |
| 31 |
4 9 15 30
|
ovmpodv2 |
⊢ ( 𝑁 ∈ 𝑉 → ( ClNeighbVtx = ( 𝑔 ∈ V , 𝑣 ∈ ( Vtx ‘ 𝑔 ) ↦ ( { 𝑣 } ∪ { 𝑛 ∈ ( Vtx ‘ 𝑔 ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝑔 ) { 𝑣 , 𝑛 } ⊆ 𝑒 } ) ) → ( 𝐺 ClNeighbVtx 𝑁 ) = ( { 𝑁 } ∪ { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 } ) ) ) |
| 32 |
3 31
|
mpi |
⊢ ( 𝑁 ∈ 𝑉 → ( 𝐺 ClNeighbVtx 𝑁 ) = ( { 𝑁 } ∪ { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 } ) ) |