Step |
Hyp |
Ref |
Expression |
1 |
|
frn |
⊢ ( 𝐵 : 𝐸 ⟶ 𝐹 → ran 𝐵 ⊆ 𝐹 ) |
2 |
1
|
3ad2ant2 |
⊢ ( ( 𝐴 : 𝐶 ⟶ 𝐷 ∧ 𝐵 : 𝐸 ⟶ 𝐹 ∧ ( 𝐶 ∩ 𝐹 ) = ∅ ) → ran 𝐵 ⊆ 𝐹 ) |
3 |
|
sslin |
⊢ ( ran 𝐵 ⊆ 𝐹 → ( dom 𝐴 ∩ ran 𝐵 ) ⊆ ( dom 𝐴 ∩ 𝐹 ) ) |
4 |
2 3
|
syl |
⊢ ( ( 𝐴 : 𝐶 ⟶ 𝐷 ∧ 𝐵 : 𝐸 ⟶ 𝐹 ∧ ( 𝐶 ∩ 𝐹 ) = ∅ ) → ( dom 𝐴 ∩ ran 𝐵 ) ⊆ ( dom 𝐴 ∩ 𝐹 ) ) |
5 |
|
fdm |
⊢ ( 𝐴 : 𝐶 ⟶ 𝐷 → dom 𝐴 = 𝐶 ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( 𝐴 : 𝐶 ⟶ 𝐷 ∧ 𝐵 : 𝐸 ⟶ 𝐹 ∧ ( 𝐶 ∩ 𝐹 ) = ∅ ) → dom 𝐴 = 𝐶 ) |
7 |
6
|
ineq1d |
⊢ ( ( 𝐴 : 𝐶 ⟶ 𝐷 ∧ 𝐵 : 𝐸 ⟶ 𝐹 ∧ ( 𝐶 ∩ 𝐹 ) = ∅ ) → ( dom 𝐴 ∩ 𝐹 ) = ( 𝐶 ∩ 𝐹 ) ) |
8 |
|
simp3 |
⊢ ( ( 𝐴 : 𝐶 ⟶ 𝐷 ∧ 𝐵 : 𝐸 ⟶ 𝐹 ∧ ( 𝐶 ∩ 𝐹 ) = ∅ ) → ( 𝐶 ∩ 𝐹 ) = ∅ ) |
9 |
7 8
|
eqtrd |
⊢ ( ( 𝐴 : 𝐶 ⟶ 𝐷 ∧ 𝐵 : 𝐸 ⟶ 𝐹 ∧ ( 𝐶 ∩ 𝐹 ) = ∅ ) → ( dom 𝐴 ∩ 𝐹 ) = ∅ ) |
10 |
4 9
|
sseqtrd |
⊢ ( ( 𝐴 : 𝐶 ⟶ 𝐷 ∧ 𝐵 : 𝐸 ⟶ 𝐹 ∧ ( 𝐶 ∩ 𝐹 ) = ∅ ) → ( dom 𝐴 ∩ ran 𝐵 ) ⊆ ∅ ) |
11 |
|
ss0 |
⊢ ( ( dom 𝐴 ∩ ran 𝐵 ) ⊆ ∅ → ( dom 𝐴 ∩ ran 𝐵 ) = ∅ ) |
12 |
10 11
|
syl |
⊢ ( ( 𝐴 : 𝐶 ⟶ 𝐷 ∧ 𝐵 : 𝐸 ⟶ 𝐹 ∧ ( 𝐶 ∩ 𝐹 ) = ∅ ) → ( dom 𝐴 ∩ ran 𝐵 ) = ∅ ) |
13 |
12
|
coemptyd |
⊢ ( ( 𝐴 : 𝐶 ⟶ 𝐷 ∧ 𝐵 : 𝐸 ⟶ 𝐹 ∧ ( 𝐶 ∩ 𝐹 ) = ∅ ) → ( 𝐴 ∘ 𝐵 ) = ∅ ) |