Metamath Proof Explorer


Theorem coeq0i

Description: coeq0 but without explicitly introducing domain and range symbols. (Contributed by Stefan O'Rear, 16-Oct-2014)

Ref Expression
Assertion coeq0i ( ( 𝐴 : 𝐶𝐷𝐵 : 𝐸𝐹 ∧ ( 𝐶𝐹 ) = ∅ ) → ( 𝐴𝐵 ) = ∅ )

Proof

Step Hyp Ref Expression
1 frn ( 𝐵 : 𝐸𝐹 → ran 𝐵𝐹 )
2 1 3ad2ant2 ( ( 𝐴 : 𝐶𝐷𝐵 : 𝐸𝐹 ∧ ( 𝐶𝐹 ) = ∅ ) → ran 𝐵𝐹 )
3 sslin ( ran 𝐵𝐹 → ( dom 𝐴 ∩ ran 𝐵 ) ⊆ ( dom 𝐴𝐹 ) )
4 2 3 syl ( ( 𝐴 : 𝐶𝐷𝐵 : 𝐸𝐹 ∧ ( 𝐶𝐹 ) = ∅ ) → ( dom 𝐴 ∩ ran 𝐵 ) ⊆ ( dom 𝐴𝐹 ) )
5 fdm ( 𝐴 : 𝐶𝐷 → dom 𝐴 = 𝐶 )
6 5 3ad2ant1 ( ( 𝐴 : 𝐶𝐷𝐵 : 𝐸𝐹 ∧ ( 𝐶𝐹 ) = ∅ ) → dom 𝐴 = 𝐶 )
7 6 ineq1d ( ( 𝐴 : 𝐶𝐷𝐵 : 𝐸𝐹 ∧ ( 𝐶𝐹 ) = ∅ ) → ( dom 𝐴𝐹 ) = ( 𝐶𝐹 ) )
8 simp3 ( ( 𝐴 : 𝐶𝐷𝐵 : 𝐸𝐹 ∧ ( 𝐶𝐹 ) = ∅ ) → ( 𝐶𝐹 ) = ∅ )
9 7 8 eqtrd ( ( 𝐴 : 𝐶𝐷𝐵 : 𝐸𝐹 ∧ ( 𝐶𝐹 ) = ∅ ) → ( dom 𝐴𝐹 ) = ∅ )
10 4 9 sseqtrd ( ( 𝐴 : 𝐶𝐷𝐵 : 𝐸𝐹 ∧ ( 𝐶𝐹 ) = ∅ ) → ( dom 𝐴 ∩ ran 𝐵 ) ⊆ ∅ )
11 ss0 ( ( dom 𝐴 ∩ ran 𝐵 ) ⊆ ∅ → ( dom 𝐴 ∩ ran 𝐵 ) = ∅ )
12 10 11 syl ( ( 𝐴 : 𝐶𝐷𝐵 : 𝐸𝐹 ∧ ( 𝐶𝐹 ) = ∅ ) → ( dom 𝐴 ∩ ran 𝐵 ) = ∅ )
13 12 coemptyd ( ( 𝐴 : 𝐶𝐷𝐵 : 𝐸𝐹 ∧ ( 𝐶𝐹 ) = ∅ ) → ( 𝐴𝐵 ) = ∅ )