| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frn | ⊢ ( 𝐵 : 𝐸 ⟶ 𝐹  →  ran  𝐵  ⊆  𝐹 ) | 
						
							| 2 | 1 | 3ad2ant2 | ⊢ ( ( 𝐴 : 𝐶 ⟶ 𝐷  ∧  𝐵 : 𝐸 ⟶ 𝐹  ∧  ( 𝐶  ∩  𝐹 )  =  ∅ )  →  ran  𝐵  ⊆  𝐹 ) | 
						
							| 3 |  | sslin | ⊢ ( ran  𝐵  ⊆  𝐹  →  ( dom  𝐴  ∩  ran  𝐵 )  ⊆  ( dom  𝐴  ∩  𝐹 ) ) | 
						
							| 4 | 2 3 | syl | ⊢ ( ( 𝐴 : 𝐶 ⟶ 𝐷  ∧  𝐵 : 𝐸 ⟶ 𝐹  ∧  ( 𝐶  ∩  𝐹 )  =  ∅ )  →  ( dom  𝐴  ∩  ran  𝐵 )  ⊆  ( dom  𝐴  ∩  𝐹 ) ) | 
						
							| 5 |  | fdm | ⊢ ( 𝐴 : 𝐶 ⟶ 𝐷  →  dom  𝐴  =  𝐶 ) | 
						
							| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝐴 : 𝐶 ⟶ 𝐷  ∧  𝐵 : 𝐸 ⟶ 𝐹  ∧  ( 𝐶  ∩  𝐹 )  =  ∅ )  →  dom  𝐴  =  𝐶 ) | 
						
							| 7 | 6 | ineq1d | ⊢ ( ( 𝐴 : 𝐶 ⟶ 𝐷  ∧  𝐵 : 𝐸 ⟶ 𝐹  ∧  ( 𝐶  ∩  𝐹 )  =  ∅ )  →  ( dom  𝐴  ∩  𝐹 )  =  ( 𝐶  ∩  𝐹 ) ) | 
						
							| 8 |  | simp3 | ⊢ ( ( 𝐴 : 𝐶 ⟶ 𝐷  ∧  𝐵 : 𝐸 ⟶ 𝐹  ∧  ( 𝐶  ∩  𝐹 )  =  ∅ )  →  ( 𝐶  ∩  𝐹 )  =  ∅ ) | 
						
							| 9 | 7 8 | eqtrd | ⊢ ( ( 𝐴 : 𝐶 ⟶ 𝐷  ∧  𝐵 : 𝐸 ⟶ 𝐹  ∧  ( 𝐶  ∩  𝐹 )  =  ∅ )  →  ( dom  𝐴  ∩  𝐹 )  =  ∅ ) | 
						
							| 10 | 4 9 | sseqtrd | ⊢ ( ( 𝐴 : 𝐶 ⟶ 𝐷  ∧  𝐵 : 𝐸 ⟶ 𝐹  ∧  ( 𝐶  ∩  𝐹 )  =  ∅ )  →  ( dom  𝐴  ∩  ran  𝐵 )  ⊆  ∅ ) | 
						
							| 11 |  | ss0 | ⊢ ( ( dom  𝐴  ∩  ran  𝐵 )  ⊆  ∅  →  ( dom  𝐴  ∩  ran  𝐵 )  =  ∅ ) | 
						
							| 12 | 10 11 | syl | ⊢ ( ( 𝐴 : 𝐶 ⟶ 𝐷  ∧  𝐵 : 𝐸 ⟶ 𝐹  ∧  ( 𝐶  ∩  𝐹 )  =  ∅ )  →  ( dom  𝐴  ∩  ran  𝐵 )  =  ∅ ) | 
						
							| 13 | 12 | coemptyd | ⊢ ( ( 𝐴 : 𝐶 ⟶ 𝐷  ∧  𝐵 : 𝐸 ⟶ 𝐹  ∧  ( 𝐶  ∩  𝐹 )  =  ∅ )  →  ( 𝐴  ∘  𝐵 )  =  ∅ ) |